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a b s t r a c t

The arriving order of data is one of the intrinsic properties of a signal. Therefore, techniques dealing
with this temporal relation are required for identification and signal processing tasks. To perform a
classification of the signal according with its temporal characteristics, it would be useful to find a feature
vector in which the temporal attributes were embedded. The correlation and power density spectrum
functions are suitable tools to manage this issue. These functions are usually defined with statistical
formulation. On the other hand, in biology there can be found numerous processes in which signals are
processed to give a feature vector; for example, the processing of sound by the auditory system.

In this work, the dNSP (dynamic Neural Signal Processing) architecture is proposed. This architecture
allows representing a time-varying signal by a spatial (thus statical) vector. Inspired by the
aforementioned biological processes, the dNSP performs frequency decomposition using an analogical
parallel algorithm carried out by simple processing units. The architecture has been developed under
the paradigm of a multilayer neural network, where the different layers are composed by units whose
activation functions have been extracted from the theory of Neural Dynamic [Grossberg, S. (1988).
Nonlinear neural networks principles, mechanisms and architectures. Neural Networks, 1, 17–61]. A
theoretical study of the behavior of the dynamic equations of the units and their relationship with some
statistical functions allows establishing a parallelism between the unit activations and correlation and
power density spectrum functions.

To test the capabilities of the proposed approach, several testbeds have been employed, i.e. the
frequencial study of mathematical functions. As a possible application of the architecture, a highly
interesting problem in the field of automatic control is addressed: the recognition of a controlled DC
motor operating state.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The temporal aspect must be taken into account to make a
complete analysis of the information included in a signal. Biological
(senses) or artificial sensors give a time sequence of data which
is transmitted to the processing kernels (brain, computer). The
order and time-delay of the data provide information as relevant
as the magnitude value. So, in a biological or computational signal
processing, a study of data timing must also be developed.

The auditory perception constitutes a clear example of the
requirement of this time series processing. The auditory system’s
ability to discern sounds of different frequencies implies a
temporal processing of the acoustic signal which involves aspects
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as correlation analysis and frequency decomposition of the signal
energy. One approach to this problem based on a neural model
which implements the autocorrelation function is developed in
Licklider (1951). Although this model has been argued about
(Kaernbach & Demany, 1998), the basic fundamentals are used on
the newmodels developed in Patterson et al. (1992) and Patterson
and Holdsworth (1996). In these papers, a transformation from
the observed sound signal to a fixed pattern of neural activation
is established. These models are described as a function of the
signal frequency composition. For a first frequency analysis, an
ARTSTREAM (Grossberg, Govindarajan, Wyse, & Cohen, 2004)
architecture is proposed, where mathematical products must
be carried out. Usually, the classic neural models work as a
weighted sum of all excitatory and inhibitory synaptic inputs
(point neuron hypothesis). Therefore, other neural models are
needed to perform the multiplying interactions. This can be
solved by the sigma-pi neurons (Rumelhart & McClelland, 1986),
which offer a highly nonlinear processing and have been used for
experimental purposes in Häusser andMel (2003) andMel (1994).
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The application fields of sigma-pi units are not only those with
biological inspiration, but also other dynamic systems where the
arriving order of data contains part of the information (e.g. to
determine the dynamic system state).

Neuromorphic engineering was proposed for the design of
Artificial Neural Networks whose architecture and design are
based on those of biological nervous systems (Mead, 1990).
Cochlear implants are a practical application of the advances
achieved so far in the study of the auditory system. They work
by transforming frequency patterns in sound into corresponding
spatial patterns (Sarpeshkar, 2006). They constitute an example of
how, by means of a biologically-inspired design, an engineering
solution can be constructed, micmicking the biological process.
Following this idea, we have studied the biological systems able to
process the temporal information and to transform it into patterns
that can be learned and recognized.

This work develops an architecture able to describe temporary
signals by means of a spatial vector. To do this, a processing of the
signal based on its frequency composition is proposed. Inspired
by the human auditory system and the neural dynamic models,
a neural-inspired approach to deal with on-line dynamic signal
processing is studied. This processing is carried out through a
multilayer neural architecture whose output is a neural activity
pattern that captures the dynamic features of the input signal. The
layers are composed of units with complex dynamics that mix
additive and multiplicative behaviors. As a part of this work, a
study of the relation between the information processing of the
proposed architecture and someexpressions in use inDigital Signal
Processing is performed.

The paper is organized as follows: in Section 2, basic definitions
of signal processing functions are stated. They allow a signal
representation attending to several criteria; in this paper, a
frequency domain description will be applied. Section 3 analyzes
the dynamics of several neural models described by differential
equations found in the literature. New models combining some
of them are studied. In Section 4, an approximation to signal
processing by means of dynamic neural models, named dNSP,
is exposed. It is implemented into an architecture which allows
the input signal processing in a dynamic and on-line way. The
output of this structure is an activation vector representing the
frequency composition of the input signal. The hidden layers of
the network contain the processing stages. In Section 5 some
experimental results obtained with the proposed architecture
are shown. Sinusoidal signals are used to verify the system’s
ability to react to a unique frequency signal and to a linear
combination of signals with different frequencies. An analysis
of the processing stages and of the network behavior when
confronted with frequency composition changes is performed.
To test a possible real application, the structure is applied to
determine the state of a simulated controlled DC motor. Finally,
the main contributions of this paper are summarized in the last
section.

2. Signal Processing

Usually, system analysis can only be developed from the
numerical measurement of its variables. The results of these
measurements come in the form of time series. It would be
useful to develop a method to process the time series, offering a
pattern-based description of the system state. Stochastic processes
are those that can not be described by an explicit mathematical
relationship. Dealing with these time series, the focus is placed on
analysing the process by only using information about the signal
values. In most cases it can be assumed that the studied process is
ergodic. Therefore, it is possible to study its nature using a unique
sampled function of it (Bendat & Piersol, 2000).

Most approaches use statistical methods for signal analysis
(Bendat & Piersol, 2000; Childers, 1997; Stearns, 2002). These are
usually based on an on-line analysis of the acquired signal. Some
relevant functions to study the signal frequency composition are
defined in the following sections.

2.1. Correlation function

The correlation function allows studying the temporal relations
between the variable values, where periodicities, delays and other
time-related characteristics arise.

Considering a stochastic process {zk(t)}, the correlation func-
tion Rxx(τ ) (Bendat & Piersol, 2000) can be defined as:

Rzz(τ ) = E[zk(t)zk(t + τ)]. (1)

If the stochastic process is weakly ergodic, the correlation
function from a unique process realization (sampled function) can
be formulated as:

Rzz(τ ) = lim
T→∞

1
T

∫ T

0
z(t)z(t + τ)dt. (2)

2.2. Spectral Power Density Function

The Spectral Power Density Function offers a description of
the energy frequency composition associated with the measured
variable. It allows characterising the sampled function of the
variable with a vectorial shape. The Spectral Power Density
Function is a widely-used tool for system identification tasks. For
a frequency f , it can de defined from the Fourier transform of the
autocorrelation function as:

Szz(f ) =

∫
∞

−∞

Rzz(τ )e−j2π f τdτ . (3)

As the negative frequencies are not physically real, it is more
appropriate to work with the one-sided autospectral density
function Gzz(f ):

Gzz(f ) =

{
2Szz(f ) if 0 < f < ∞

0 otherwise. (4)

3. Neural dynamics

This term encloses a set of models obtained from differential
equations, which follow to describe the internal processes taking
place into neurons and their response to an external stimulus.
Thesemodels allow to obtain the final result (neuron response) and
to emulate the mechanism to generate the response. To obtain the
time behavior of the neuron state, the well-known additive model
(Nigrin, 1993; Kosko, 1992) is used, according to:

d
dt

xi = −Axi +
n∑

j=1

f (xj)wji + Ii. (5)

The xi value corresponds with the activation state of the i-
th unit. The constant A > 0 introduces a term named passive
decay which, in the absence of external stimuli, drives the neuron
activation to zero. It also can be considered as a forgetting factor
because it causes past activity levels to gradually lose their
influence on the present neural activity.

The second addend in Eq. (5) involves the interactions coming
from other neurons. The channels connecting these neurons weigh
their influence through the wji value. The external stimuli are
reflected in Ii.



Download English Version:

https://daneshyari.com/en/article/404563

Download Persian Version:

https://daneshyari.com/article/404563

Daneshyari.com

https://daneshyari.com/en/article/404563
https://daneshyari.com/article/404563
https://daneshyari.com

