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a b s t r a c t 

In this paper, a novel particle filter (PF) which we refer to as the quadrature particle filter (QPF) based 

on fuzzy c-means clustering is proposed. In the proposed algorithm, a set of quadrature point probability 

densities are designed to approximate the predicted and posterior probability density functions (pdf) of 

the quadrature particle filter as a Gaussian. It is different from the Gaussian particle filter that uses the 

prior distribution as the proposal distribution, the proposal distribution of the QPF is approximated by 

a set of modified quadrature point probability densities, which can effectively enhance the diversity of 

samples and improve the performance of the QPF. Moreover, the fuzzy membership degrees provided by 

a modified version of fuzzy c-means clustering algorithm are used to substitute the weights of the par- 

ticles, and the quadrature point weights are adaptively estimated based on the weighting exponent and 

the particle weights. Finally, experiment results show the proposed algorithms have advantages over the 

conventional methods, namely, the unscented Kalman filter(UKF), quadrature Kalman filter(QKF), particle 

filter(PF), unscented particle filter(UPF) and Gaussian particle filter(GPF), to solve nonlinear non-Gaussian 

filtering problems. Especially, to the target tracking in Aperiodic Sparseness Sampling Environment, the 

performance of the quadrature particle filter is much better than those of other nonlinear filtering ap- 

proaches. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

The nonlinear filtering problem refers to the state estimation 

of a nonlinear stochastic system based on noisy observation data 

obtained from that system over time. This is of paramount impor- 

tance in many fields of science and engineering, such as naviga- 

tional and guidance systems, communication, visual tracking and 

satellite navigation [1,2] . As is well-known, the most widely used 

filter for the nonlinear filtering problems is the extend Kalman 

filter (EKF) [2] . However, the performance of the EKF degrades 

rapidly as the nonlinearity becomes more severe. To alleviate this 

problem, the Unscented Kalman Filter (UKF) [3] maintains the sec- 

ond order statistics of the target distribution by recursively prop- 

agating a set of carefully selected sigma points. This method re- 

quires no linearization, and generally yields more robust estimates 

than the EKF. Ienkaran Arasaratnam and Simon Haykin [4] propose 

the quadrature Kalman filtering (QKF) by applying the statistical 

linear regression (SLR) theory to linearize the nonlinear discrete 

system functions. García-Fernández and Morelande [5] propose a 

truncated unscented Kalman filtering (TUKF) by approximating the 

first two moments of the posterior in nonlinear systems with a 
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bijective measurement function. Some interesting relations among 

some of these KF-type algorithms are given in [6,7] . However, the 

limitation of these methods is that they do not apply to general 

non-Gaussian distributions. 

To deal with the nonlinear non-Gaussian filtering problem, one 

popular solution strategy is to use sequential Monte Carlo meth- 

ods (SMC), also known as particle filters [8,9,10] . The first working 

particle filter has been reported in [8] . For a recent overview of 

the field we refer to [11,12] . In particle filter, the choice of the pro- 

posal distribution (or the important density) is very important. In 

general, it is difficult to design such a proposal distribution. Now 

many proposal distributions have been proposed in the literature. 

For example, the state transition prior [8] , the EKF Gaussian ap- 

proximation and the UKF proposal [13] are used as the proposal 

distribution for particle filter. Nevertheless, a major drawback is 

that the particle filters exhibits a rapid increase in computational 

complexity as the number of samples increases, and a large part 

of which comes from resampling. To solve this problem, Jayesh H.K 

and Petar M.D propose the Gaussian particle filter (GPF) by approx- 

imating the posterior mean and covariance of the unknown state 

variable using importance sampling [14] , and the absence of re- 

sampling makes it convenient for VLSI implementation and, hence, 

feasible for practical real-time applications. In [15] , they extend 

the GPF to build Gaussian sum particle filters that can be used for 
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models where the predicted and posterior distributions cannot be 

approximated successfully with a single Gaussian distribution and 

for models with non-Gaussian noise. 

Another way of dealing with nonlinear non-Gaussian problem 

is the use of soft computing techniques, such as fuzzy logic [16–

18] . In [19] , Young-Joong et al. propose a fuzzy adaptive particle 

filter for the localization of a mobile robot, whose basic idea is to 

generate samples at high-likelihood using a fuzzy logic approach. 

Shandiz et al. [20] present a particle filtering approach in which 

particles are weighted using a fuzzy based color model for object. 

Thomas et al. [21] use an adaptive Gaussian mixture model for 

background modeling and a fuzzy sequential Monte-Carlo-based 

tracking algorithm for tracking multiple objects under varying il- 

lumination. The use of fuzzy logic to compute the final weight of 

each particle brings us different benefits compared to the proba- 

bilistic approach [22] . First, fuzzy logic approach can approximate 

the probabilistic distribution in a more flexible way than the prob- 

abilistic approach without being restricted to particular aspects of 

the probability distributions. Secondly, fuzzy logic easily allows us 

to incrementally add other sources of information by using linguis- 

tic variables and rules. 

The main contributions of this paper are as follows. First, a 

novel quadrature particle filter (QPF) based on fuzzy c-means clus- 

tering is proposed for nonlinear non-Gaussian filtering problem. 

Unlike the PF, UPF and GPF, the new QPF uses a set of modified 

quadrature point probability densities as the proposal distribution, 

which can effectively enhance the diversity of samples. Second, 

the distance measure function of fuzzy c-means clustering is de- 

fined based on the probability density function, and the proba- 

bility weights of the particles are substituted by the fuzzy mem- 

bership degrees provided by a modified fuzzy c-means clustering 

algorithm, the quadrature point weights are adaptively estimated 

based on the fuzzy weighting exponent and the particle weights. 

Finally, the new QPF is analyzed theoretically and studied through 

two simulation examples. 

The rest of the paper is organized as follows. In Section 2 , we 

address the nonlinear Bayesian filtering. In Section 3 , we introduce 

the quadrature particle filtering. Simulation results that compare 

the performances of all algorithms are presented in Section 4 . Fi- 

nally, some conclusions are provided in Section 5 . 

2. Nonlinear Bayesian filtering 

Consider the nonlinear discrete time dynamic system: 

x k = f k ( x k −1 , v k −1 ) (1) 

z k = h k ( x k , e k ) (2) 

where f k : � 

n x × � 

n v → � 

n x and h k : � 

n x × � 

n e → � 

n z represent 

some known nonlinear function, x k ∈ � 

n x is the system state at 

time k , z k ∈ � 

n z is the measurement vector at time k . v k −1 ∈ 

� 

n v denotes the process noise, e k ∈ � 

n e denotes the measurement 

noise. 

2.1. Optimal Bayesian filtering 

The optimal nonlinear filtering problem is to find the probabil- 

ity density function p( x k | z 1: k −1 ) of the state x k given the measure- 

ment data z 1: k . The posterior probability density function (PDF) is 

given by Bayes’ formula 

p( x k | z 1: k ) = 

p( z k | x k ) p( x k | z 1: k −1 ) 

p( z k | z 1: k −1 ) 
(3) 

where p( z k | z 1: k −1 ) is the normalizing constant, p( z k | z 1: k −1 ) = ∫ 
p( z k | x k ) p( x k | z 1: k −1 ) d x k . The prior PDF p( x k | z 1: k −1 ) of the state at 

time k can be obtained via the Chapman–Kolmogorov equation, 

p( x k | z 1: k −1 ) = 

∫ 
p( x k | x k −1 ) p( x k −1 | z 1: k −1 ) d x k −1 (4) 

It is worth noting that the probabilistic model of the state evo- 

lution in Eq. (4) has the fact that p( x k | x k −1 , z 1: k −1 ) = p( x k | x k −1 ) is 

defined by the process Eq. (1) and the known probability distri- 

bution of v k −1 . The likelihood function p ( z k | x k ) can be obtained 

through the measurement model ( 2 ) and the known probability 

distribution of e k . In Eq. (3) , the measurement z k is used to modify 

the prior pdf p( x k | z 1: k −1 ) to obtain the posterior pdf p ( x k | z 1: k ) of 

the current state x k . 

As well known, when the state and measurement models 

are linear Gaussian noise, the Kalman filter provides an optimal 

Bayesian solution. However, for most nonlinear models and non- 

Gaussian noise problems, the optimal algorithms are impossible to 

implement, primarily because the pdf updates require integrations 

that are not practical to implement. As a result, several approxima- 

tion methods have been proposed, such as particle filtering. 

2.2. Particle filtering 

In particle filtering, the posterior pdf is approximated by a 

set of samples with associated weight, which are easily gener- 

ated from a so-called proposal distribution π ( x k ). In order to de- 

scribe the particle filtering algorithm, we suppose that the pos- 

terior pdf p( x 0: k −1 | z 0: k −1 ) is approximated by a random mea- 

sure χk −1 = { x i 
0: k −1 

, w 

i 
k −1 

} N s 
i =1 

, where { x i 
0: k −1 

} N s 
i =1 

is a set of support 

points with associated weights { w 

i 
k −1 

} N s 
i =1 

and N s is the number of 

particles [23] . Given the random measure χk −1 and the measure- 

ment z k , the objective is to obtain χ k based on the random mea- 

sure χk −1 . Sequential importance sampling methods achieve this 

by generating particles x i 
k 

and appending them to x i 
0: k −1 

to form 

x i 
0: k 

, and updating the weights w 

i 
k −1 

so that χ k allows for accurate 

estimates of the unknowns of interest at time k . However, direct 

sampling from p ( x 0: k | z 0: k ) is intractable, one can generate parti- 

cles x i 
k 

from the proposal distribution π ( x ). 

If we use a proposal distribution that can be factored as 

π( x 0: k | z 0: k ) = π( x k | x 0: k −1 , z 0: k ) π( x 0: k −1 | z 0: k −1 ) (5) 

and if 

x i 0: k −1 ∼ π( x 0: k −1 | z 0: k −1 ) 

and 

w 

i 
0: k −1 ∼

π(x i 
0: k −1 

| z 0: k −1 ) 

π(x i 
0: k −1 

| z 0: k −1 ) 
(6) 

We can obtain samples x i 
0: k 

by augmenting each of the ex- 

isting samples x i 
0: k −1 

with the samples x i 
k 

that are drawn from 

π( x k | x i 0: k −1 
, z 0: k ) , then the modified weights can be updated by 

w 

i 
k ∼ w 

i 
k −1 

p( z k | x i k ) p(x i 
k 
| x i 

k −1 
) 

π(x i 
0: k −1 

x i 
0: k −1 

, z 0: k ) 
(7) 

and the posterior pdf can be approximated as 

p( x k | z 1: k ) ≈
N s ∑ 

i =1 

w 

i 
k δ

(
x k − x i k 

)
(8) 

where δ( · ) is the Dirac delta function. From Eq. (8) , it shows that 

the approximation approaches the true posterior density p ( x k | z 1: k ) 

as N s → ∞ . 

From Eqs. (5) and ( 7 ), it is shown that the particle filter con- 

sists of recursive propagation of the samples and weights as each 

measurement is received sequentially. Furthermore, a major prob- 

lem with particle filtering is the degeneracy phenomenon. In other 
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