
Knowledge-Based Systems 106 (2016) 179–195 

Contents lists available at ScienceDirect 

Knowle dge-Base d Systems 

journal homepage: www.elsevier.com/locate/knosys 

Evidential clustering of large dissimilarity data 

Thierry Denœux 

a , 1 , ∗, Songsak Sriboonchitta 

b , Orakanya Kanjanatarakul c 

a Sorbonne Universités, Université de Technologie de Compiègne, CNRS, UMR 7253 Heudiasyc, France 
b Faculty of Economics, Chiang Mai University, Thailand 
c Faculty of Management Sciences, Chiang Mai Rajabhat University, Thailand 

a r t i c l e i n f o 

Article history: 

Received 9 April 2016 

Revised 20 May 2016 

Accepted 22 May 2016 

Available online 27 May 2016 

Keywords: 

Dempster-Shafer theory 

Evidence theory 

Belief functions 

Unsupervised learning 

Credal partition 

Relational data 

Proximity data 

Pairwise data 

a b s t r a c t 

In evidential clustering, the membership of objects to clusters is considered to be uncertain and is repre- 

sented by Dempster-Shafer mass functions, forming a credal partition. The EVCLUS algorithm constructs 

a credal partition in such a way that larger dissimilarities between objects correspond to higher de- 

grees of conflict between the associated mass functions. In this paper, we present several improvements 

to EVCLUS, making it applicable to very large dissimilarity data. First, the gradient-based optimization 

procedure in the original EVCLUS algorithm is replaced by a much faster iterative row-wise quadratic 

programming method. Secondly, we show that EVCLUS can be provided with only a random sample of 

the dissimilarities, reducing the time and space complexity from quadratic to roughly linear. Finally, we 

introduce a two-step approach to construct credal partitions assigning masses to selected pairs of clus- 

ters, making the algorithm outputs more informative than those of the original EVCLUS, while remaining 

manageable for large numbers of clusters. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Clustering data into groups is one of the fundamental tasks in 

data mining and machine learning. Clustering algorithms can be 

distinguished according to the input data they can process, and ac- 

cording to the outputs they produce. 

Typically, two categories of input data are considered: attribute 

(vectorial) data and dissimilarity (proximity, relational, pairwise) 

data. In the former case, each object is described by a vector of 

numerical or categorical attributes. In the latter, the data takes 

the form of a matrix of dissimilarities between objects. Attribute 

data can be easily transformed into dissimilarity data by choosing 

a suitable distance. The inverse transformation (from dissimilarity 

to attribute data) is generally more difficult, except in the special 

case of metric dissimilarities, i.e., dissimilarities that are exact Eu- 

clidean distances between vectors in a latent space, a case not so 

frequent in practice. Finding an attribute representation of a set of 

objects, such that distances between objects approximate a given 

dissimilarity matrix is often a difficult task (referred to as multi- 

dimensional scaling – MDS), which requires to solve a large scale 

nonlinear optimization problem [3,4] . Most clustering algorithms, 

such as the c -means algorithms and its numerous variants, are de- 
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signed to handle attribute data. A smaller number of algorithms, 

referred to as relational clustering methods, can directly handle dis- 

similarity data [9–11] . 

As for the clustering outputs, we can distinguish between par- 

titional clustering, which aims at finding a partition of the objects, 

and hierarchical clustering, which finds a sequence of nested parti- 

tions. Over the years, the notion of partitional clustering has been 

extended to several important variants, including fuzzy [2] and 

possibilistic [16] clustering, and more recently, rough [20,27] and 

evidential [7,25] clustering. Contrary to classical (hard) partitional 

clustering, in which each object is assigned unambiguously and 

with full certainty to a single cluster, these variants allow for am- 

biguity, uncertainty or doubt in the assignment of objects to clus- 

ters. For this reason, they are referred to as “soft” clustering meth- 

ods [28] , in contrast with classical, “hard” clustering. Among soft 

clustering paradigms, evidential clustering describes the uncertainty 

in the membership of each object to clusters using a Dempster- 

Shafer mass function [30] , which assigns a mass to each subset of 

clusters. This is a rich and informative description of the clustering 

structure of a data set, which can be shown to include hard, fuzzy 

and rough partitions as special cases. Recently, evidential cluster- 

ing has been successfully applied in various domains such as ma- 

chine prognosis [29] , medical image processing [17,24] and analysis 

of social networks [34] . Similar ideas have also been exploited in 

supervised classification (see, e.g., [18,21,22] ). 
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In [7] , one of us (the first author) introduced EVCLUS, an ev- 

idential clustering algorithm that handles (non necessarily met- 

ric) dissimilarity data. EVCLUS is based on the natural assumption 

that the plausibility of two objects belonging to the same cluster 

is higher when the two objects are more similar. This assumption 

translates into the search for a credal partition minimizing a cost 

function. A variant of EVCLUS allowing one to use prior knowledge 

in the form of pairwise constraints was later introduced in [1] . 

The EVCLUS algorithm has several advantages. It is conceptu- 

ally simple and it can handle non metric dissimilarity data (even 

expressed on an ordinal scale). It was also shown to outperform 

some of the state-of-the-art relational clustering techniques on a 

number of datasets [7] . On the minus side, the main drawback of 

EVCLUS is its computational complexity. As other relational clus- 

tering algorithms, it requires to store the whole dissimilarity ma- 

trix; the space complexity is thus O ( n 2 ), where n is the num- 

ber of objects, which precludes application to datasets contain- 

ing more than a few thousand objects. Furthermore, each iteration 

of the gradient-based optimization procedure implemented in the 

EVCLUS algorithm requires O ( f 3 n 2 ) operations, where f is the num- 

ber of focal sets of the mass functions, i.e., the number of subsets 

of clusters being considered. In the worst case, f = 2 c , where c is 

the number of clusters. To make the method usable even for mod- 

erate values of c , we need to restrict the form of the mass func- 

tions so that masses are only assigned to focal sets of size 0, 1 or 

c , which prevents us from fully exploiting the potential generality 

of the method. 

In this paper, we propose some improvements to the EVCLUS 

algorithm, making it applicable to very large datasets. These im- 

provements are threefold. First, the gradient-based optimization 

procedure in the original EVCLUS algorithm is replaced by an adap- 

tation of the much faster iterative row-wise quadratic program- 

ming method proposed in [31] . Secondly, we show that EVCLUS 

does not need to be provided with the whole dissimilarity ma- 

trix, reducing the time and space complexity from quadratic to 

roughly linear. Finally, we introduce a two-step approach to con- 

struct credal partitions assigning masses to selected pairs of clus- 

ters, making the algorithm outputs more informative than those of 

the original EVCLUS, while remaining manageable for large num- 

bers of clusters. 

The rest of the paper is organized as follows. The background 

on belief functions, evidential clustering and the EVCUS algorithm 

will first be recalled in Section 2 . The new optimization procedure 

will be described and evaluated in Section 3 . Improvements of EV- 

CLUS making it applicable to problems with large numbers of ob- 

jects and large numbers of clusters will then be described, respec- 

tively, in Sections 4 and 5 . Finally, Section 6 will conclude the pa- 

per. 

2. Background 

In this section, a brief reminder on Dempster-Shafer theory will 

first be provided in Section 2.1 . Credal partitions and related nec- 

essary notions will then be recalled in Section 2.2 , and the EVCLUS 

algorithm will be presented in Section 2.3 . 

2.1. Mass functions 

Let � = { ω 1 , . . . , ω c } be a finite set representing the possible 

answers to some question Q , one and only one of which is true. 

The true answer is denoted by ω. A mass function � is a mapping 

from the power set 2 � to [0, 1] such that ∑ 

A ⊆�

m (A ) = 1 . (1) 

Each number m ( A ) represents the degree of support attached to 

the proposition ω ∈ A , and to no more specific proposition [30] . 

The subsets A of � such that m i ( A ) > 0 are called the focal sets of 

m . A mass function m is said to be 

• normalized if ∅ is not a focal set; 

• logical if it has only one focal set; 

• Bayesian if its focal sets are singletons; 

• certain if it is both logical and Bayesian, i.e., if it has only one 

focal set, and this focal set is a singleton; 

• consonant if its focal sets are nested. 

To each mass function m , we may associate belief and plausi- 

bility functions from 2 � to [0, 1] defined, respectively, as follows, 

Bel(A ) = 

∑ 

∅� = B ⊆A 

m (B ) (2a) 

P l(A ) = 

∑ 

B ∩ A � = ∅ 
m (B ) , (2b) 

for all A ⊆ �. These two functions are linked by the relation 

P l(A ) = Bel(�) − Bel( A ) , for all A ⊆ �. The quantity Bel ( A ) is a 

measure of how much the proposition “ω ∈ A ” is supported by the 

available evidence. In contrast Bel(�) − P l(A ) = Bel( A ) is a mea- 

sure of how much the complementary hypothesis A is supported, 

so that Pl ( A ) can be seen as a measure of lack of support for A . The 

function pl : � → [0, 1] that maps each element ω of � to its plau- 

sibility pl(ω) = P l({ ω} ) is called the contour function associated 

to m . 

If m is Bayesian, then Bel = P l, and this function is a probability 

measure; the contour function is thus the usual probability mass 

function, i.e., Bel(A ) = P l(A ) = 

∑ 

ω∈ A pl(ω) for all A ⊆ �. If m is 

consonant, then Pl is a possibility measure, i.e., we have P l(A ∪ B ) = 

max (P l(A ) , P l(B )) for all A , B ⊆ �, and Bel is the dual necessity 

measure; pl is then the corresponding possibility distribution, i.e., 

P l(A ) = max ω∈ A pl(ω) for all A ⊆ �. A consonant mass function 

can be uniquely recovered from its contour function. 

Let m 1 and m 2 be two mass functions defined on the same set 

�. Their degree of conflict [30] is defined as 

κ = 

∑ 

A ∩ B = ∅ 
m 1 (A ) m 2 (B ) . (3) 

It is comprised between 0 and 1. When m 1 and m 2 are two mass 

functions representing two independent pieces of evidence about 

the same question, κ is interpreted as a measure of conflict be- 

tween these two pieces of evidence. A different interpretation of κ
was provided in [7] , for the case where m 1 and m 2 represent inde- 

pendent pieces of evidence about two different questions Q 1 and 

Q 2 , with the same set of possible answers �: in that case, 1 − κ is 

the plausibility that the true answers to Q 1 and Q 2 are identical. 

Example 1. Let us assume that the questions of inter- 

est concern the nationalities of Ann and Henri. Let � = 

{ Singapore , Thailand , France , Canada } be the set of possible an- 

swers to both questions. We receive some evidence that Ann 

comes from an Asian country, with probability 0.8, and indepen- 

dent evidence that Henri originates from a country where French 

is an official language, with probability 0.5. What is the plausibility 

that Ann and Henri have the same nationality? The two pieces of 

evidence translate into the following mass functions 

m 1 ({ Singapore , Thailand } ) = 0 . 8 , m 1 (�) = 0 . 2 , (4a) 

m 2 ({ France , Canada } ) = 0 . 5 , m 2 (�) = 0 . 5 . (4b) 

The degree of conflict between m 1 and m 2 is 

κ = m 1 ({ Singapore , Thailand } ) m 2 ({ France , Canada } ) (5a) 

= 0 . 8 × 0 . 5 = 0 . 4 . (5b) 

The requested plausibility is thus 1 − 0 . 4 = 0 . 6 . �
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