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a b s t r a c t

In this paper, we propose a computational model for arm reaching control and learning. Our model
describes not only the mechanism of motor control but also that of learning. Although several motor
control models have been proposed to explain the control mechanism underlying well-trained arm
reaching movements, it has not been fully considered how the central nervous system (CNS) learns to
control our body. One of the great abilities of the CNS is that it can learn by itself how to control our
body to execute required tasks. Our model is designed to improve the performance of control in a trial-
and-error manner which is commonly seen in human’s motor skill learning. In this paper, we focus on
a reaching task in the sagittal plane and show that our model can learn and generate accurate reaching
toward various target points without prior knowledge of arm dynamics. Furthermore, by comparing the
movement trajectories with those made by human subjects, we show that our model can reproduce
human-like reaching motions without specifying desired trajectories.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

When we move our hand from one point to another, the hand
paths tend to gently curve and the hand speed profiles are bell-
shaped (Abend, Bizzi, & Morasso, 1982; Atkeson & Hollerback,
1985; Uno, Kawato, & Suzuki, 1989). Since humans show these
highly stereotyped trajectories among an infinite number of
possible ones, it has been suggested that the central nervous
system (CNS) is optimizing arm movements so as to minimize
some kind of cost function (Flash & Hogan, 1985; Harris &
Wolpert, 1998; Uno et al., 1989). Cost functions specifymovement-
related variables that should be minimized during or after the
movement. Meanwhile, several computational control models
have been proposed to explain the way the CNS generates a set
of motor commands that could minimize cost functions (Flash,
1987; Gribble, Ostry, Sanguineti, & Laboissiere, 1998; Hogan, 1984;
Miyamoto, Nakano, Wolpert, & Kawato, 2004; Todorov & Jordan,
2002; Wada & Kawato, 1993). The hand trajectories predicted by
these models are in strong agreement with experimental data.
The purpose of these models, however, is to predict well-learned
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reachingmovements themselves and not to describe the process of
learning. In order to reproduce themovements, the control models
were designed using detailed knowledge about the dynamics of
musculoskeletal systems.
The purpose of this paper is to propose a motor control model

that can learn the control law for reaching movements while
actually controlling the arm. Let us call this type of model a ‘‘motor
control-learning model’’. From observing infants’ inaccurate and
jerky motions (Konczak & Dichgans, 1997; Zaal, Daigle, Gottlieb,
& Thelen, 1999), the motor skill to generate accurate and smooth
adult-likemovements seem to be acquired throughmotor learning
performed in our daily life. However, this kind of learning is not
as simple as general supervised learning problems. Since there is
no explicit ‘‘teacher’’ that can provide the CNS with correct motor
commands, the CNS has to learn how to control the body in a trial-
and-error manner, through interaction with the environment.
Reinforcement learning has attracted much attention as a self-

learning paradigm for acquiring optimal control strategy through
trial-and-error (Sutton & Barto, 1998). In particular, the actor-
critic method, one of the major frameworks for the temporal
difference learning, has been proposed as a model of learning in
the basal ganglia (Barto, 1995; Doya, 1999). We adopt the actor-
criticmethod (Doya, 2000) in order to acquire a feedback controller
for multi-joint reaching movements. Although we are not the first
to apply the actor-critic method to a reaching task, the previous
model only explained a reaching movement toward one particular
target (Izawa, Kondo, & Ito, 2004). In our daily life, we are not
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always reaching to the same target. The CNS should be learning
how to generate reachingmovements toward various targets in the
workspace. However, it is difficult to realize various movements
with high accuracy using a single feedback controller. Since the
gravitational force acting on the arm depends on the posture of the
arm, the force required to hold the hand at the target varies with
the target position. Furthermore, the magnitude of muscle tension
varies with the posture of the arm even if a level command signal
is sent to the muscle. For these reasons, there is no guarantee that
a single feedback controller trained for a particular target would
generate accurate reaching movements to other targets.
Here we introduce an additional controller called an inverse

statics model, which supports the feedback controller in gener-
ating reaching movements toward various targets. It handles the
static component of the inverse dynamics of the arm. That is, it
transforms a desired position (or posture) into a set of motor com-
mands that leads the hand to the desired position and holds it
there. Note that the arm converges to a certain equilibrium pos-
ture when a constant set of motor commands is sent to the mus-
cles because of the spring-like properties of the musculoskeletal
system (Feldman, 1966). If the inverse statics model is trained
properly, it can compensate for the static forces (e.g. gravity) at
the target point. Therefore, accurate reaching movements toward
various target points are realized by combining the inverse stat-
ics model and the feedback controller that works moderately well
within theworkspace. To acquire an accurate inverse staticsmodel
in a trial-and-error manner, we adopt the feedback-error-learning
scheme (Kawato, Furukawa, & Suzuki, 1987). In this scheme, in-
verse dynamics (or statics)models of controlled objects are trained
by using command outputs of the feedback controller as error sig-
nals. This learning scheme was originally proposed as a computa-
tional coherent model of cerebellar motor learning (Kawato et al.,
1987). The original model, however, did not explain how to ac-
quire the feedback controller for armmovements. In ourmodel, the
actor-critic method is introduced to train the feedback controller.
Therefore, our model gives a possible solution to the problem of
feedback controller design in the feedback-error-learning scheme.
In addition to the feedback controller and the inverse statics

model, we introduced a forward dynamics model of the arm
into our motor control-learning model. The forward dynamics
model is an internal model that predicts a future state of the
arm given outgoing motor commands. It has been proposed that
the CNS is utilizing the forward dynamics model to internally
predict the state of the arm during the control process (Miall &
Wolpert, 1996; Wolpert, Miall, & Kawato, 1998). The existence
of the forward dynamics model in the CNS is also supported
by psychophysical experiments (Bard, Turrell, Fleury, Teasdale,
Lamarre, & Martin, 1999; Wolpert, Ghahramani, & Jordan, 1995).
The forward dynamics model can be trained in a supervised
learning manner since the teaching signal can be obtained from
somatosensory feedback. In the literature of automatic control,
the strategy to combine system identification with reinforcement
learning succeeded in autonomously controlling machines with
complex dynamics such as helicopters (Abbeel, Coates, Quigley, &
Ng, 2007). In our model, the forward dynamics model is designed
to predict the state of the arm at a future time instant so
as to compensate for delay of motor output caused by graded
development of the muscle force. The predicted future states are
then utilized to determine command outputs of the feedback
controller.
In the present study, we apply our motor control-learning

model to a point-to-point reaching task in the sagittal plane. By
simulating the learning process of the reaching task, we show
that our model can accurately control the arm to reach toward
various target points without assuming prior knowledge of the
arm dynamics. In addition, we compare reaching movements

Fig. 1. The architecture of motor control-learning model: the model has three
mainmodules, Inverse StaticsModel (ISM), Feedback Controller (FBC), and Forward
Dynamics Model (FDM). The FBC is composed of actor and critic units, which
correspond to a controller and value function estimator respectively in the actor-
critic method. The ISM generates a feed-forward motor command uism that shifts
the equilibrium state of the arm to the desired state xd . On the other hand, the
FBC generates a feedback motor command ufbc that reduces the error between the
desired state xd and the future state x̂future predicted by the FDM. The error signal
for the ISM is the feedbackmotor command ufbc . Meanwhile, the teaching signal for
the FDM is the state of the arm x observed at next time instant. The FBC is trained by
the actor-critic method so as to maximize the cumulative reward r . The temporal
difference error δ related to the reward r is used as the reinforcer and error signal
for the actor and critic units, respectively.

simulated by our model with those of human subjects, and show
that ourmodel can reproduce features of both hand path and speed
profile in human reaching movements without planning desired
trajectories.

2. Motor control-learning model

Fig. 1 illustrates architecture of the motor control-learning
model for a reaching task. The model consists of three main
modules, inverse statics model (ISM), feedback controller (FBC),
and forward dynamics model (FDM). The FBC is composed of
actor and critic units, which correspond to a controller and value
function estimator respectively in the actor-critic method.
At the beginning of each trial, a target point of reaching is given

as a desired state xd to the model. This xd is kept constant at the
target point throughout the trial. The ISM receives xd as an input
and generates a time-invariant motor command uism. If the ISM
were trained correctly, uism shifts the equilibrium of the arm to
the target point. On the other hand, at time t , the FBC receives a
state error between desired state xd and future state x̂future(t−1t)
predicted by the FDM 1t second before time t . The FBC, then,
transforms the state error into a feedback motor command ufbc(t).
The sum of uism and ufbc(t) is sent to the arm as a total motor
command u(t). Based on the total motor command u(t) and the
state x(t), the FDM predicts next state x̂next(t) and also future state
x̂future(t).
The three modules improve their performance in the following

way. A teaching signal for FDM’s prediction x̂next(t) is given by
observing the actual state at time t+1t . Therefore, the FDM can be
trained in normal supervised learning manner, in which the error
signal is determined as

Efdm(t) = x(t +1t)− x̂next(t). (1)

On the other hand, the ISM is trained with the feedback-error-
learning scheme in which the error signal for ISM’s output uism is
FDM’s output, that is,

Eism(t) = ufbc(t). (2)
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