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a b s t r a c t

T. Kohonen’s self organizing map (SOM) may be considered as a plausible structure for modelling pattern
recognition processes in the brain. Neighborhood preservation corresponds closely to what is called
somatotopy in the neurosciences, and the context specificity of mappings observed (e. g. in malfunctions
of the brain) becomes easily explicable in the framework of the SOM. However, there are two features
which impair the aptitude of the classical SOM for neurophysiological models: the adaptation procedure
is explicitly time dependent and the procedure consumes the whole set of disposable neurons. Because
of the latter property, a SOM cannot learn different tasks, adapting one subset of neurons to a data set
X1 and another to a subsequently presented data set X2 .
The present paper describes a modified SOM which avoids the drawbacks mentioned above. Its

adaptation procedure is time independent. When the training sequence consists of data from successive
data clusters Xk each cluster is mapped to a subset Gk of the neuron set Gwhile the other neurons are left
almost unchanged. The behavior of the resulting DCNG-SOM is demonstrated in several experiments.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Kohonen’s famous paper on self-organized maps (Kohonen,
1982, 1995) has given rise to an enormous number of publications.
The original Kohonenmap is inspired from the observation that, in
the mammalian brain, the mapping of sensory inputs to the cortex
is somatotopic (i.e. that signals from neighboring body areas are
mapped to neighboring cortex regions). This concept has proven
very successful in practical applications. However, it is based on
intuitive considerations, and not on a strict mathematical theory.
Therefore, it suffers from certain deficiencies which are discussed
in Kohonen (1995).
The original SOM and most of its variants require that the

learning parameters (i.e. learning strength and range of adaptation
within the neuron grid) are successively modified during the
training phase. It is necessary to define a so called annealing
scheme, controlling this time dependency. Unfortunately there is
no firm theoretical basis for constructing such schemes, and often
they are determined empirically. That the mapping changes with
time is the purpose of the process. However the time dependency
is an explicit one: learning parameters vary with time and thus
the quantitative properties of the process itself change during the
training phase. This prevents the classical SOM from learning a new
mapping when the training is complete.
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Meanwhile, there are a large number of papers which define
new SOM types. Most of them have amathematical basis and some
of them avoid the explicit time dependency.
Typical examples are the SOAN (self organization with adap-

tive neighborhood neural network) (Iglesias & Barro, 1999) and the
parameterless PLSOM (Berglund & Sitte, 2006). Both use the cur-
rentmapping error to adjust the internal parameters of the adapta-
tion process. In the time-adaptive SOM (TASOM), (Shah-Hosseini &
Safabakhsh, 2003) each node has its own variable learning strength
and neighborhood size. As a consequence, the network as a whole
keeps its ability to learn independent from time. Somewhat sim-
plified, the TASOM approach may be considered as shifting the de-
pendency on externally controlled learning parameters to a depen-
dency on individual node properties, thus converting the explicit
time dependency into an implicit one. The present paper pursues
a similar strategy. A rather elaborate mathematical procedure is
used in the auto-SOM (Haese, 1999; Haese & Goodhill, 2001): here
the weight vectors are adapted bymeans of a Kalman filter and the
learning parameters are determined so as to minimize the predic-
tion error variance. With regard to the result, the generative topo-
graphic mapping (GTM Bishop, Svensén, and Williams (1998)) is
also a SOM. The adaptation algorithm is probabilistic and does not
need a decreasing learning strength or a shrinking range of adap-
tation. However, the mapping problem is formulated in terms of
a latent variable model, and thus the connection to Kohonen’s ap-
proach is weak. In some SOM variants, the number of neurons and
the whole network structure change with time. Although this is a
very strong time dependency, it is an implicit one: addition and
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removal of neurons are controlled solely by the stream of input
signals. Examples are the growing cell structure (Fritzke, 1994a),
the growing neural gas (Fritzke, 1995, 1994b) and the plastic self-
organizing map (Lang & Warwick, 2002).
Compared to the original Kohonen SOM, these variants are

remarkable improvements. They do not need an external control
of parameters and, especially the TASOM, is well suited for tasks
with changing data sets. Above all, they achieve a better mapping
quality, at least in certain applications
On the other hand, mapping quality and performance become

less important if SOM structures are used to model processes in
the brain. Here we are confronted not only with excellent function,
but alsowithmalfunction occurring in certain situations. Therefore
it seems useful to study another kind of SOM which is designed
primarily for biological modelling purposes, and not for better
performance.
Soon after the first SOM publications, Merzenich et al.

demonstrated that the reorganization observed in the sensory
cortex of mammals after peripheral nerve damage can be
modeled as an adaptation process in a Kohonen map (Merzenich
et al., 1984). Martinetz, Ritter, and Schulten (1988) showed,
that the auditive cortex of a bat may be considered as a
neighborhood preserving map of the relevant space of ultrasonic
signals. Meanwhile the SOM concept is accepted as a tool for
understanding the processing of sensory signals in the brain
(Kaas, 1991; Sirosh & Miikkulainen, 1995; Turrigiano & Nelson,
2004; Wiemer, Spengler, Joublin, Stagge, & Wacquant, 2000).
Nevertheless, at least the classical SOM has two properties which
hamper its use for the modelling task described above:

1. An explicit time dependence means that there exists a
control mechanism outside the SOM. When the training for a
task is completed, this mechanism would be responsible for
restoring the plasticity if a new task is to be learned. The
time independent SOM variants mentioned above, avoid this
problem, but their mathematical procedures cannot easily be
transferred into a biological framework.

2. The training process of the classical SOMadapts thewhole set of
disposable neurons to a given set of signal vectors. There remain
no neuronswhich can be used for a subsequent training process
with a different set of signal vectors. This is in contradiction to
the observed plasticity of the brain. We can learn many new
tasks without forgetting those we have learned before.

After all, it appears useful to modify the Kohonen training
procedure, retaining the principal properties of the original SOM
and avoiding the undesirable properties pointed out above. The
necessary modifications are the following:

• The adaptation procedure must not contain an explicit time
dependency.
• Training with a certain data set X1 should result in a mapping
of X1 to a certain neuron group G1 ⊂ G and not to the whole
neuron set G. The bulk of neurons should be left disposable for
subsequent training phases with different data sets X1, X2, . . ..

The SOM introduced in the present paper fulfills these
requirements. However in contrast to the time independent SOMs
mentioned above, it is constructed in a purely intuitive way.
The goal is not an improved mapping, but a neurophysiologically
plausible mechanism. Rather than from amathematical theory the
design starts from the idea, that a firing neuron remains for some
time in an excited state with increased sensibility and that its
excitation spreads to his neighbors. As in the TASOM, a particular
neuron has not only its own synaptic coupling vector Ew but, in
addition, a statewhichdetermines its behavior. The state, however,
is only a single entity a, the activation. This is enough to allow for
a time independent adaptation procedure which does not use all

available neurons, but only a certain neuron group, to represent a
data cluster. Because of this property, the resulting SOM is called
DCNG-SOM. As in the growing neuron structures (Fritzke, 1994a,
1995; Lang&Warwick, 2002), the incoming streamof data controls
the number of neurons involved in the mapping of a cluster. In
contrast to these SOM variants, the neurons are not taken from a
potentially infinite stock. Instead, the number of neurons is fixed,
and they have a fixed position in physical space.
The aspect of performance in applications is not considered.

We simply study the properties of the DCNG-SOM resulting from
the use of the modified neuron. This is because the long-term
objective is not only to model neuroplasticity, but also to explain
disorderings in the mapping of sensory signals to the sensory
cortex. Such disorderings have been observed (e. g. in patients
suffering from focal dystonia).
Focal dystonia is a movement disorder occurring in several

forms, as for example, writers cramp and musicians cramp.
Apparently the cause is not an organic defect but rather something
like an overtraining. This suggests that focal dystonia has to do
with a misled self organization process. Sanger and Merzenich
(2000) have hypothesized that it is a manifestation of an unstable
sensorimotor control loop. They discuss several mechanisms
which possibly could lead to a gain >1 in the feedback loop. The
mapping mentioned above is a link in this loop. As yet, theoretical
studies on focal dystonia concentrate on the time behavior of
sensory signals and on the control theoretic aspects of the problem.
However, in some musicians with focal dystonia, the disordered
cortical representation of digits could be observed directly by
functional magnetic resonance imaging (Elbert et al., 1998). The
increasing empirical material in this field suggests the study of the
formation of disordered mappings with SOM based models
It is a characteristic of focal dystonias that they are task

specific. The focal dystonia of musicians affects the control of
finger movements only in the context of instrument playing. It
does not affect the function of the same fingers in other activities.
This means that the disturbed mapping is effective only in a
special context. The context specificity becomes understandable if
a cortical region is described as a SOM. A sensory stimulus might
be considered as a signal vector

Ex = (x1, . . . , xn) = (s1, . . . , sk, c1, . . . , cn−k) = (Es, Ec) (1)

where Ec describes the context. In this picture, it appears plausible
that certain stimuli (Es(i), Ec) are mapped to a corrupted part of
the map, while stimuli with the same Es(i) and a different context
part Ec ′ are processed in correctly working regions. Admittedly,
it remains an open question as to whether sensory stimuli are
actually encoded as high dimensional signal vectors.
In the literature, there are some context-aware SOM variants

(e.g. the recursive self-organizing map by Voegtlin (2002)). They
are designed to represent the temporal context of patterns, and
in principle they allow the reconstruction of pattern sequences.
In contrast, the present paper restricts itself to the more simple
problem of constructing different maps for data clusters which are
presented successively to the net.

2. Mapping of data clusters to neuron Groups: The training
procedure

Let us assume a data set

X = X1 ∪ X2 ∪ X3 · · · ∪ Xk ⊂ Rm (2)

with the property

∃M ∈ (0, 1.0) : ∀a, b ∈ X s, u, v ∈ X t : |a− b|,
|u− v| < M|a− u|, s 6= t (3)

i.e. X consists of distinct clusters X s.
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