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a b s t r a c t

Weconsider the design principles of algorithms thatmatch templates to images subject to spatiotemporal
encoding. Both templates and images are encoded as temporal sequences of samplings from spatial
patterns. Matching is required to be tolerant to various combinations of image perturbations. These
include ones that can be modeled as parameterized uncertainties such as image blur, luminance, and,
as special cases, invariant transformation groups such as translation and rotations, as well as unmodeled
uncertainties (noise). For a system to deal with such perturbations in an efficient way, they are to be
handled through a minimal number of channels and by simple adaptation mechanisms. These normative
requirements can be met within the mathematical framework of weakly attracting sets. We discuss
explicit implementation of this principle in neural systems and show that it naturally explains a range
of phenomena in biological vision, such as mental rotation, visual search, and the presence of multiple
time scales in adaptation. We illustrate our results with an application to a realistic pattern recognition
problem.

© 2009 Elsevier Ltd. All rights reserved.

1. Notational preliminaries

We define an image as a mapping S0(x, y) from a class of locally
bounded mappings S ⊆ L∞(Ωx × Ωy), where Ωx ⊆ R, Ωy ⊆ R,
and L∞(Ωx×Ωy) is the space of all functions f : Ωx×Ωy → R such
that ‖f ‖∞ = ess sup{‖f (x, y)‖, x ∈ Ωx, y ∈ Ωy} < ∞. Symbols
x, y denote variables on different spatial axes. The value of S0(x, y)
depends on the domain of interest (e.g. brightness, contrast, color,
etc.). Our interpretation of images as functions from L∞(Ωx ×Ωy)
is motivated mostly by the fact that in the domain of vision the
characteristic values are usually bounded. We will treat them as
such unless information to the contrary is available.
We assume that within a system an image is represented as a

set of pre-specified templates, Si(x, y) ∈ S, i ∈ I ⊂ N, where
I is the set of indices of all templates associated with the image
S0(x, y) ∈ S. Symbol I+ is reserved for I+ = I ∪ 0.
The solution of a system of differential equations ẋ =

f(x, t, θ,u(t)), u : R≥0 → Rm, θ ∈ Rd passing through point x0
at t = t0 will be denoted for t ≥ t0 as x(t, x0, t0, θ,u), or simply as
x(t) if it is clear from the context what the values of x0, θ are and
how the function u(t) is defined.
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By Ln
∞
[t0, T ], t0 ≥ 0, T ≥ t0 we denote the space of all functions

f : R≥0 → Rn such that‖f‖∞,[t0,T ] = ess sup{‖f(t)‖, t ∈ [t0, T ]} <
∞; ‖f‖∞,[t0,T ] stands for the L

n
∞
[t0, T ] norm of f(t).

LetA be a set in Rn and ‖ · ‖ be the usual Euclidean norm in Rn.
By the symbol ‖·‖A we denote the following induced norm:

‖x‖A = infq∈A
{‖x− q‖}.

In case x is a scalar and ∆ ∈ R>0, notation ‖x‖∆ stands for the
following

‖x‖∆ =
{
|x| −∆, |x| > ∆

0, |x| ≤ ∆.

2. Introduction

This article deals with the challenges and opportunities that
spatiotemporal representation of visual information offers for
visual pattern recognition. We will consider spatiotemporal
pattern representation in the framework of template matching,
the oldest and most common method for detecting an object in an
image. According to this method the image is searched for items
that match a template. A template consists of one or more local
arrays of values representing the object, e.g. intensity, color, or

0893-6080/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2009.01.014

http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:tyukinivan@brain.riken.jp
mailto:I.Tyukin@le.ac.uk
mailto:tatianat@brain.riken.jp
mailto:ceesvl@brain.riken.jp
http://dx.doi.org/10.1016/j.neunet.2009.01.014


426 I. Tyukin et al. / Neural Networks 22 (2009) 425–449

Fig. 1. Spatial sampling of image S(x, y) : Ωx ×Ωy → R+ according to the factorization ofΩx ×Ωy into subsetsΩx,t1 ×Ωy,t1 ,Ωx,t2 ×Ωy,t2 ,Ωx,t3 ×Ωy,t3 .

texture. A similarity value1 is calculated between these templates
and domains of the image, and a domain is associated with the
template once their similarity exceeds a given threshold.
Despite the simple and straightforward character of this

method, its implementation requires us to consider two funda-
mental problems. The first relates towhat features should be com-
pared between the image S0(x, y) and the template Si(x, y), i ∈ I.
The second problem is how this comparison should be done.
The normative answer to the question of what features

should be compared invokes solving the issue of optimal image
representation, ensuring most effective utilization of available
resources and, at the same time, minimal vulnerability to
uncertainties. Principled solutions to this problem are well known
from the literature and can be characterized as spatial sampling.
For example, when the resource is frequency bandwidth of
a single measurement mechanism, the optimality of spatially
sampled representations is proven inGabor’s seminalwork (Gabor,
1946).2 In classification problems, the advantage of spatially
sampled image representations is demonstrated in Ullman,
Vidal-Naquet, and Sali (2002). In general, these representations
are obtained naturally when balancing the system resources
and uncertainties in the measured signal. A simple argument
supporting this claim is provided in Appendix A.
A variety of sophisticated spatial sampling methods exists

(Blake, Curwen, & Zisserman, 1994; Bueso, Angulo, Quian, &
Alonso, 1999; Gabor, 1946; Lee & Yuille, 2006). Here we limit
ourselves to spatial sampling in its elementary form, which is
achieved by factorizing both the domainΩx × Ωy of the image S0
and the templates Si, i ∈ I into subsets:

Ωx ×Ωy =
⋃
t

Ωx,t ×Ωy,t , t ∈ Ωt ,Ωx,t ⊆ Ωx,Ωy,t ⊆ Ωy. (1)

Factorization (1) induces sequences {Si,t}, where Si,t are the re-
strictions of mappings Si to the domains Ωx,t × Ωy,t . These se-
quences constitute sampled representations of Si, i ∈ I+ (see
Fig. 1). Notice that the sampled image and template representa-
tions {Si,t} are, strictly speaking, sequences of functions. In order to
compare them, scalar values f (Si,t) are normally assigned to each

1 Traditionally a correlation measure is commonly used for this purpose (Jain,
Duin, & Mao, 2000).
2 Consider, for instance, a system which measures image Si(x, y) using a set of
sensors {m1, . . . ,mn}. Each sensor mi is capable of measuring signals within the
given frequency band ∆i at the location xi in corresponding spatial dimension x.
Then according to Gabor (1946), sensormi canmeasure both the frequency content
of a signal and its spatial location with minimal uncertainty only if the signal has a
Gaussian envelope in x: Si(x, y) ∼ eσ

−2
i (x−xi)2 . In other words, the signal should be

practically spatially bounded. This implies that the imagemust be spatially sampled.

Si,t . Examples include various functional norms, correlation func-
tions, spectral characterizations (average frequency or phase), or
simply weighted sums of the values of Si,t over the entire domain
Ωx,t × Ωy,t . Formally, f could be defined as a functional, which
maps restrictions Si,t into the field of real numbers:

f : L∞(Ωx,t ×Ωy,t)→ R. (2)

This formulation allows a simple representation of images and
templates as sequences of scalar values {f (Si,t)}, i ∈ I+, t ∈ Ωt .
We will therefore adopt this method here.
The answer to the second question, how the comparison is

done, involves finding the best and simplest way possible to utilize
the information that a given image representation provides, while
at the same time ensuring invariance to basic distortions. Even
though considerable attention has been given to this problem,
a unified solution is not yet available. The primary goal of our
current contribution is to present a unified framework to solve this
problem for a class of systems of sufficiently broad theoretical and
practical relevance.
We consider the class of systems in which spatially sampled

image representations are encoded as temporal sequences. In
other words, parameter t in the notation f (Si,t) is the time
variable. This type of representation is frequently encountered
in neuronal networks (Gutig & Sompolinsky, 2006) (see also the
references therein). Examples of similar representation schemes
are widely reported in the neuroscience literature. For example
Alonso, Usrey, and Reid (1996) show that patches of visual
stimuli which are perceived as spatially close by the processing
system (e.g. when the receptive fields of individual cells overlap)
are encoded by similar firing spike patterns and vice versa. In
our model spatially non-overlapping patches are represented by
different sequences {f (Si,t)}, and identical images have identical
temporal representations. Hence such systems have a claim to
biological plausibility. In addition, they enable a simple solution
to a well-known dilemma. This is about whether comparison
between templates and image domains should be made on a large,
i.e. global, or on a small, i.e. local scale. The solution to this dilemma
consists in temporal integration. Let, for instance, Ωt = [0, T ],
T ∈ R>0. Then an example of a temporally integral, yet spatially
sampled, representation is:

f (Si,t) 7→ φi(t) =
∫ t

0
f (Si,τ )dτ , t ∈ [0, T ], i ∈ I+. (3)

The temporal integral φi(t) contains both spatially local and
global image characterizations. Whereas its time derivative at
t equals to f (Si,t) and corresponds to spatially sampled, local
representation Si,t , the global representation φi(T ) equals to the
integral, cumulative characterization of Si. An example illustrating
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