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a b s t r a c t

In this paper,we present a new recurrent bidirectionalmodel that encompasses correlational, competitive
and topological model properties. The simultaneous use of many classes of network behaviors allows for
the unsupervised learning/categorization of perceptual patterns (through input compression) and the
concurrent encoding of proximities in a multidimensional space. All of these operations are achieved
within a common learning operation, and using a single set of defining properties. It is shown that the
model can learn categories by developing prototype representations strictly from exposition to specific
exemplars. Moreover, because the model is recurrent, it can reconstruct perfect outputs from incomplete
and noisy patterns. Empirical exploration of themodel’s properties and performance shows that its ability
for adequate clustering stems from: (1) properly distributing connection weights, and (2) producing a
weight space with a low dispersion level (or higher density). In addition, since the model uses a sparse
representation (k-winners), the size of topological neighborhood can be fixed, and no longer requires
a decrease through time as was the case with classic self-organizing feature maps. Since the model’s
learning and transmission parameters are independent from learning trials, the model can develop stable
fixed points in a constrained topological architecture, while being flexible enough to learn novel patterns.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Cognitive science background

Every day, humans are exposed to situations in which they
are required to either differentiate or regroup perceptual patterns
(such as objects presented to the visual system). Their percep-
tual/cognitive system achieves these operations in order to pro-
duce appropriate responses, upon the identity and properties of
the encountered stimuli. To accomplish these perceptual tasks, the
systemmust create and enrich context-dependent memory repre-
sentations, which are adapted to different environments, but can
be shared between these environments through generalization.
This general process, known as perceptual learning, mainly con-
sists in the implicit abstraction of previously unavailable informa-
tion, leading to semi-permanent changes at the memory structure
level (Gibson & Gibson, 1955). Most perceptual learning processes
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can be achieved autonomously, through the associative abstrac-
tion of the environment’s statistical structures (as someneural net-
works do: Goldstone, 1998; Hall, 1991).
One of the system’s main goals in defining mental represen-

tations is cognitive economy (Goldstone & Kersten, 2003). Invari-
ance is a quality that leads to economy by reducing the quantity
of information that the system must take into account in a given
situation, thus accelerating cognitive processes (or more precisely,
retrieval of memory traces). Hence, in order to be efficient, the
human perceptual/cognitive system must create representations
including relevant statistical properties leading to quick differenti-
ation, identification and recognition (Goldstone, 1998). These rep-
resentationswill be useful in future situations, when the need for a
decision based on a newor repeating perceptual stimulation arises.
Strictly memorizing invariant information lessens the computa-
tional burden on the cognitive system, and allows it to follow an
information reduction strategy. At the object level, this strategy
would be found in the form of a dimensional reduction applied to
inputs (Edelman & Intrator, 1997).
Another strategy used by the system to reduce information

and increase processing speed is the representation of similar
perceptual stimulations by a single higher-level entity, created
according to the common perceptual properties of themember ob-
jects. This process is called perceptual category learning (Murphy,
2002). Cognitive scientists have historically argued over the fact
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that the human cognitive system either uses generic abstractions
(such as prototypes) or very specific perceptual stimulations (such
as complete exemplars) to achieve category learning and further
classification (Komatsu, 1992). Prototype supporters believe that
categories possess a special representational status within the
cognitive system. Hence, every exemplar set is linked to a more
generic, summary representation that can be retrieved indepen-
dently, and for which the memory trace is stronger and more
durable than for any exemplar (Posner & Keele, 1968, 1970). These
representations help the system in quickly deciding on a stim-
ulus’ category membership, and are enhanced according to new
incoming information. To achieve this, categories must be easy to
differentiate; this is why the natural world is composed of cohe-
sive categories, in which associated exemplars are similar to each
other (Rosch, 1973).
Following the work of Knowlton and Squire (1993) and

Knowlton, Mangels, and Squire (1996), we now know that the
prototype theory is valid in categorization. Neuropsychological
dissociation studies have led to the conclusion that while
single object representations must be memorized in order to
achieve recognition, identification and discrimination, categorical
representations are completely separate in the system, and operate
according to a prototype principle.

1.2. Modeling background

1.2.1. Recurrent/Bidirectional associative memories
When trying to achieve autonomous (or unsupervised) learning

and categorization, many neural network options are available.
A class of networks known to achieve these types of tasks is
that of recurrent autoassociative memories (RAMs). In psychology,
AI and engineering, autoassociative memory models are widely
used to store correlated patterns. One characteristic of RAMs is
the use of a feedback loop, which allows for generalization to
new patterns, noise filtering and pattern completion, among other
uses (Hopfield, 1982). Feedback enables a given network to shift
progressively from an initial pattern towards an invariable state
(namely, an attractor).
A problem with these models is that contrarily to what is

found in real-world situations, they store learned information
using noise-free versions of the input patterns. In comparison, to
overcome the possibly infinite number of stimuli stemming, for
instance, from multiple perceptual events, humans must regroup
these unique inputs into a finite number of stimuli or categories.
Also, while RAMs can perfectly reconstruct learned patterns
through an iterative process, they cannot associate many distinct
inputs with a single representation, that is they cannot categorize.
Direct generalization of RAM models is the development of

bidirectional associative memory (BAM) models (Kosko, 1988).
BAMs can associate any two data vectors of equal or different
lengths (representing for example, a visual input and a prototype
or category). These networks possess the advantage of being both
autoassociative andheteroassociativememories (Kosko, 1988) and
therefore encompass both unsupervised and supervised learning.
A BAMmodel would be able to develop prototype representations
linked to different exemplars, but only in a supervised fashion.
Nowadays, many RAM/BAM models can display both stability and
plasticity for a data set of exemplars (e.g. Davey and Hunt (2000)
and Du, Chen, Yuan, and Zhang (2005)).

1.2.2. Competitive networks
Overall, category formation in a perceptual framework is often

seen as a process akin to classic clustering techniques, which
involve partitioning stimulus spaces in a number of finite sets,

or clusters (Ashby & Waldron, 1999). In cognitive modeling,
competitive networks (e.g. Grossberg (1988) and Kohonen (1982))
are known for their capacity to achieve clustering behavior. In fact,
they constitute local, dynamic versions of clustering algorithms.
In these models, each output unit represents a specific cluster.
When taking decisions, the association between an exemplar and
its determined cluster unit in the output layer is strengthened.
In winner-take-all (WTA) networks (Grossberg, 1988; Kohonen,
1982), exemplarsmay only be associatedwith one cluster (i.e. only
one output unit at a time can be activated).
An example of one such hard competitive framework is that

of the Adaptive Resonance Theory (ART: (Grossberg, 1988)).
ART networks possess the advantage of being able to deal
effectively with the exemplars/prototype scheme, while solving
the stability/plasticity dilemma. These unsupervised models
achieve the desired behavior through the use of a novelty detector
(using vigilance). Various degrees of generalization can be achieved
by this procedure: low vigilance parameter values lead to the
creation of broad categories, while high values lead to narrow
categories, with the network ultimately performing exemplar
learning.
Another example of this framework is the self-organizing feature

map (SOFM: Kohonen, 1982), which, in addition to showing WTA
behaviors, uses a topological representation of inputs and outputs.
Although SOFMs only consider one active output unit at a time,
the learning algorithm also allows for physically close neighboring
units to update their connection weights. In a SOFM, an exemplar
may thus, for instance, be geometrically positioned between two
clusters, and possess various degrees of membership.
An extension of the WTA principle selects the k largest outputs

from the total n outputs (Majani, Erlanson, & Abu-Mostafa, 1989).
This k-winners-take-all (kWTA) rule is thus a more general case
of the WTA principle, within which exemplars may be associated
with many clusters at differing degrees. This procedure provides a
more distributed classification.
While extremely useful for object and category processing,

competitive networks do not achieve recurrent behavior. They are
thus generally sensitive to input noise during recall. ART networks
can deal with noise through a novelty detection procedure, but do
not encompass topological properties. In comparison, SOFMs show
topological properties, but are not resistant to noise and do not
show plasticity.

1.3. Goals and presentation

In the present paper, we propose a new bidirectional heteroas-
sociative memory (BHM), named BHM + SOFM, which encom-
passes kWTA and SOFM properties. This modification will enable
a known BHM model (Chartier & Boukadoum, 2006a) to increase
its clustering capacity; hence, higher network performance and
readability should follow. In addition, this kWTA–SOFM version of
a BHM will allow for sparse coding, which is a distributed repre-
sentation principle supported by neuropsychological findings (Ol-
shausen & Field, 2004). The network will also inherit properties
from its recurrent memory status, such as attractor development
and noise tolerance (Hassoun, 1989). Finally, using sparse coding,
we will propose a modification to the original network (Chartier,
Giguère, Langlois, & Sioufi, in press) that will enable it to solve a
simple version (exemplar data set) of the stability–plasticity prob-
lem (Grossberg, 1987). Therefore, the goal of this study is to pro-
pose a generalmodel based on BAMs, that shows properties similar
to those found in other network types, such as competitive behav-
ior in SOFMs.
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