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a b s t r a c t

Since their introduction sixty years ago, cell assemblies have proved to be a powerful paradigm for
brain information processing. After their introduction in artificial intelligence, cell assemblies became
commonly used in computational neuroscience as a neural substrate for content addressable memories.
However, the mechanisms underlying their formation are poorly understood and, so far, there is no
biologically plausible algorithms which can explain how external stimuli can be online stored in cell
assemblies.
We addressed this question in a previous paper [Salihoglu, U., Bersini, H., Yamaguchi, Y., Molter, C.,

(2009). A model for the cognitive map formation: Application of the retroaxonal theory. In Proc. IEEE
international joint conference on neural networks], were, based on biologically plausible mechanisms, a
novel unsupervised algorithm for online cell assemblies’ creation was developed. The procedure involved
simultaneously, a fast Hebbian/anti-Hebbian learning of the network’s recurrent connections for the
creation of new cell assemblies, and a slower feedback signal which stabilized the cell assemblies by
learning the feedforward input connections.
Here, we first quantify the role played by the retroaxonal feedback mechanism. Then, we show how

multiple cognitive maps, composed by a set of orthogonal input stimuli, can be encoded in the network.
As a result, when facing a previously learned input, the system is able to retrieve the cognitive map it
belongs to. As a consequence, ambiguous inputs which could belong to multiple cognitive maps can be
disambiguated by the knowledge of the context, i.e. the cognitive map.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

During the past sixty years, despite seminal observations
suggesting the existence and the importance of complex dynamics
in the brain (Babloyantz & Destexhe, 1986; Skarda & Freeman,
1987), fixed point dynamics has been the predominant regime
used to describe brain information processing (Grossberg, 1992, for
a review). More recently, the increasing power of computers and
the development of new statistical mathematics demonstrated
less equivocally the necessity to rely on more complex dynamics
(e.g. Kenet, Bibitchkov, Tsodyks, Grinvald & Arieli, 2003). In
that view, by extending classical Hopfield networks to encode
cyclic attractors, the authors demonstrated that cyclic and chaotic
dynamics could encompass several limitations of fixed point
dynamics (Molter, Salihoglu & Bersini, 2007).
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Still, the nature of the information processed was not defined.
More than fifty years ago, Hebb proposed the cell assembly
theory of cortical associative memory (Hebb, 1949). In this theory,
each memory is defined by a cell assembly, i.e. a set of cells
having strong synaptic weights between each other due to the
well-known Hebbian rule of synaptic plasticity. The functional
principles underlying that theory of memory has been formalized
mathematically as attractor neural networks and is still a working
concept in the neuroscience community for the understanding of
how the brain works. The first part of this paper tries to conciliate
these two views and propose the encoding of information in
predefined cell assemblies, here noted CA(s), characterized by
complex dynamics by relying on a very simple rate firing model.
To validate our model, two features are tested: first, the ability

to recover the full information from partial stimulation (content
addressability); second, the ability to maintain a memory of
the stimulus in the network’s dynamics (working memory). The
working memory appears as a fundamental component in the
realization of higher cognitive functions, and defines the ability

0893-6080/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2009.06.025

http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
mailto:usalihog@iridia.ulb.ac.be
mailto:cmolter@brain.riken.jp
http://dx.doi.org/10.1016/j.neunet.2009.06.025


688 U. Salihoglu et al. / Neural Networks 22 (2009) 687–696

to hold and manipulate limited amounts of information during
short time periods (Baddeley & Hitch, 1974). The neural basis of
the working memory has been widely investigated in primates
with single cell recordings (Fuster, 1973; Fuster &Alexander, 1971;
Rainer, Asaad&Miller, 1998) andneuro-imaging tools (Cohen et al.,
1997). It was demonstrated that some of the cells which were
responsive to the stimulus maintained their activity during a short
period after stimulus offset. In response, several computational
models have already shown that cell assemblies could work
as working memory by actively holding a limited amount of
information for a short time (e.g. Compte, Brunel, Goldman-Rakic
& Wang, 2000; Durstewitz, Seamans & Sejnowski, 2000; Molter,
Colliaux & Yamaguchi, in press; Mongillo, Barak & Tsodyks, 2008).
Similarly, in our model, after stimulus removal, the dynamics can
remain in a specific attractor. The novelty in our model will be the
presence of strange attractors reached for ambiguous stimuli and
leading to itinerancy among several attractors.
The second part of the paper addresses an issue which was

not raised in the previous working memory models: how to form
these cell assemblies. To this end,we propose a novel unsupervised
algorithm which creates cell assemblies based on the external
stimulus. The procedure combines two biologically plausible
mechanisms. First, the rapid Hebbian/anti-Hebbian learning of
the network’s recurrent connections to create the cell assemblies.
Second, a slow feedback mechanism to organize the incoming
connections for the stabilization (or destruction) of the cell
assemblies. This retroaxonal feedback has been observed to occur
on several levels in the brain (Buss, Sun & Oppenheim, 2006;
Hamburger, 1992, 1993; Oppenheim, 1991) and has recently
been suggested as a plausible mechanism for stabilizing neuronal
activity (Harris, 2008). Results show that the obtained CAs exhibit
similar behavior as the pre-encoded ones.
This algorithm is reminiscent of a long tradition of models

promoting the unsupervised self organization of information
in neural networks, such as the adaptive resonance theory
(e.g. Carpenter & Grossberg, 1988; Grossberg, 1993) or the self
organizingmaps (e.g. Kohonen, 1982, 2001). However, ourmethod
differs radically regarding the nature of the dynamics expected.
While in the former models the successful encoding/retrieval
of information was characterized by simple dynamics (usually
in the form of fixed point attractors), here, following the view
that the presence of chaotic dynamics can boost the network’s
capacity (Molter & Bersini, 2003), complex dynamics was enforced
as much as possible.
Finally, this model is proposed as a working paradigm for

the formation of a cognitive map. In that view, a map results
from the juxtaposition of the several cell assemblies associated
with the environment’s set of stimuli. To learn multiple maps, a
context layer is added. The network can then recover the map
to which a stimulus belongs. The context knowledge (from the
previous stimuli or top-down control) can then help to identify
noisy stimuli andmore precisely can help to disambiguate external
stimuli which could be associated with CAs from multiple maps.
This model of cognitive map formation based on the creation
of cell assemblies is an alternative to the view that a cognitive
map is characterized by a continuous attractor (McNaughton,
Battaglia, Jensen, Moser, E. & Moser, M. B, 2006; Samsonovich &
McNaughton, 1997).

2. Network model architecture

2.1. Architecture and activation function

The basic structure of the network is constituted by two layers
of neurons (Fig. 1). The first layer containsM units and represents
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Fig. 1. Model architecture. The associative layer, modelling the dorsal CA3
network, receives feedforward connections from external stimuli. Additionally,
the associative layer is linked to a context layer, which could be the ventral CA3
network.

the external stimulus. This layer feeds through the feedforward
connectionsWS the second layer of N neurons. That second layer,
called the associative layer, contains recurrent connectionsWR and
accordingly, can be seen as a model of the dorsal CA3 network. As
an extension of our previous model (Salihoglu, Bersini, Yamaguchi
& Molter, 2009), an additional context layer of P units has been
added. That layer receives connections from the associative layer
(WC ) and feeds it in return (WV ).
Each cell of the system is represented by simple McCulloch and

Pitts neurons evolving in discrete time step (McCulloch & Pitts,
1943). The network’s update rule was chosen to be synchronous.1
This enabled the use of matrix computation, and the state at time n
of the cells in the associative layer (X(n)) and in the context layer
(C(n)) is given by :

X(n) = F (WRX(n− 1)+WS I(n− 1)+WVC(n− 1))
C(n) = G (WCX(n− 1))

(1)

whereWR,WS ,WC andWV are weight matrix, and I(n) is the input
vector at time n.
Units in the associative layer used a sigmoid transfer function:

f (xi) =
tanh (3xi − 2)+ 1

2
(2)

with the coefficients chosen such that the firing rate is bounded
(x ∈ [0, 1]) and is nearly equal to zero in absence of any inputs
(f (0) ≈ 0; which means that no short term memory feature was
implemented at the cell level). F is the vector formulation of the
function f .
In the context layer, a multiple winner take all activation

function was chosen. If we note Ki the total activity impinging a
context cell ci, the activity of that cell at time n is given by:

ci(n) =


1 if

 Ki(n)
P∑
i
Ki(n)


10

> 0.1

0 otherwise

(3)

where P is the total number of cells in the context layer. This tra-
nsfer function defines the function G in Eq. (1). The exponentia-
tion enhances distance between good candidates and averaged
ones.

1 To enhance complex dynamics and to speed up the computations, (the
convergence theorem to fixed point attractors in Hopfield networks required an
asynchronous update rule (Hopfield, 1982)).
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