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ABSTRACT

The hippocampal formation is believed to play a central role in memory functions related to the
representation of events. Events are usually considered as temporally bounded processes, in contrast
to the continuous nature of sensory signal flow they originate from. Events are then organized and
stored according to behavioral relevance and are used to facilitate prediction of similar events. In this
paper we are interested in the kind of representation of sensory signals that allows for detecting and/or
predicting events. Based on new results on the identification problem of linear hidden processes, we
propose a connectionist network with biologically sound parameter tuning that can represent causal
relationships and define events. Interestingly, the wiring diagram of our architecture not only resembles
the gross anatomy of the hippocampal formation (including the entorhinal cortex), but it also features
similar spatial distribution functions of activity (localized and periodic, ‘grid-like’ patterns) as found in
the different parts of the hippocampal formation. We shortly discuss how our model corresponds to
different theories on the role of the hippocampal formation in forming episodic memories or supporting
spatial navigation. We speculate that our approach may constitute a step toward a unified theory about

the functional role of the hippocampus and the structure of memory representations.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Although our senses receive an enormous amount of informa-
tion at every time instant, we have the remarkable ability to fil-
ter out, organize and store only those pieces of information that
might be relevant from behavioral, physical or cognitive aspects.
In addition, sensory information processing is believed to facilitate
prediction (Bialek, Nemenman, & Tishby, 2001) of behaviorally rel-
evant changes of observations including both internal and external
variables. How this prediction actually works is an open question,
but it is generally assumed that it is based on the creation of inter-
nal representations of lower complexity. In the temporal domain
such condensed representation may lead to the notion of events.
An event may intuitively be defined as a primary cause that results
in temporally bounded change of a given state or condition behind
the observations. For example, an animal may be still or moving
fast, and anything (detecting a predator or a potential mating part-
ner) that can trigger a switch between these states could be seen
as an event. By learning causal relationships between events and
the resulting changes, it becomes possible to predict succeeding
states by detecting a particular event. However, in contrast to the
widely used coding mechanisms where codewords can easily be
distinguished, we receive a continuous flow of sensory signals. Due
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to the limited memory capacity, an efficient segmentation mecha-
nism is required to help encode the incoming signals. In Section 2
we formalize our assumptions on the sensory signals and - based
on the notion of statistical independence — we show how the result-
ing model can be used for segmentation. Statistical independence
is often coupled with sparse coding (Foldidk, 2002; Olshausen &
Field, 1997; Seeger, 2008), which has been suggested as the un-
derlying neural mechanism for optimal reconstruction regarding
redundancy reduction and stimulus reconstruction. What it means
is that most (natural) stimuli can be decomposed into a finite set
of features which are sparse (that is they are ‘silent’ in most of
the time), but when they can be detected, their contribution to the
overall signal is quite important. This sparsity can then be used as
a time stamp that marks the start and end points of state transi-
tion processes. In Section 3 we translate the algorithms into a con-
nectionist network in which parameter tuning can only be realized
via biologically plausible local interactions. In Section 4 we briefly
sketch the functional parallels between our computational model
and the hippocampal region (HR). For decades, hippocampus re-
search has been dedicated to study either its role in episodic mem-
ory or its role in spatial navigation (Eichenbaum, 2000; O’Keefe &
Nadel, 1978; Vargha-Khadem et al., 1997). Recently, a new line of
research has emerged that attempts to unite the seemingly orthog-
onal theories developed in these two parallel tracks (e.g. Mizumori
(2006)). Our model is essentially a signal encoding system dealing
with time series and representations; thus it seems to belong to
the first venue. To see how it behaves when there is space related
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information in the sensory signals (which is of fundamental impor-
tance in spatial navigation problems), we present some simulation
results in Section 5 about the dynamics of the model when applied
on inputs with explicit spatial dependence. Finally, in Section 6 we
shortly discuss the results as well as the limitations of the current
model and propose a mechanism that may support and extend our
model even if such explicit spatial dependence of the inputs can-
not be assumed. One of the most interesting issues is the relation
between our information theoretically motivated model and the-
ories on the sensory-motor integration process proposed to form
predictive internal models of the world. We also formalize some
predictions on the functioning and dynamics of the HR. A short ver-
sion of this paper with a different emphasis has been accepted at
[JCNN’09 (Lérincz & Szirtes, 2009).

2. Identification of the sensory input

It is natural to interpret the observations (x(t) € RY) as mixed
signals emitted by a hidden (not directly observable) state variable
(s(t) e RY) that evolves in time thus forming a process. The
simplest case is if linearity is assumed both for the mixing and
the dynamics of the process. Accordingly, the observations and the
hidden process may be written as:

x(t) = As(t)
-1 Jj-1

S(t+1) =Y Fst—i)+ Y He(t+1—}))
i=0 j=0

that is the observations are instantaneous mixtures of the state
components whose evolution follows an autoregressive moving
average process (ARMA) of order (I, J) with driving noise (or inno-
vation process) e(t) € RY. In general the driving noise components
are assumed to be temporally independent and identically dis-
tributed (i.i.d.) stochastic variables. However, in accord with our
causal definition of events we also assume that noise compo-
nents (or at least their subgroups) are spatially (i.e., index-wise)
independent. We assume that matrix Hy € R* is the identity
matrix I; € R The ARMA(I, J) model comprises the contribu-
tions of previous states transferred by the predictive matrices F;
(i = 0,...,I — 1) and the different echoes of the driving noise
transferred by matrices H; (j =0, ..., J — 1). The goal is to find the
FFeR™(i=0,....1—1)andH e R"(j=0,...,] — 1)es-
timations of the hidden dynamics and the echo structure, respec-
tively, and to learn to separately represent the estimated hidden
state, $(t), and the independent subgroups of the estimated driv-
ing noise e(t).

Regarding the structure of F;, i = (0, ...,I — 1), a special case
seems relevant: joint block-diagonal structure implies dynamical
sub-processes that do not mix. These hidden processes are
independent in a dynamical sense so their identification could
reduce the representational complexity.

For simplicity, we assume a hidden ARMA(1, 0) = AR(1) pro-
cess and the issue of delays will be discussed later. (On higher order
hidden ARMA processes and post-nonlinear extensions see Lérincz
and Szab6 (2007), Szabé, Péczos, and Lérincz (2007a, 2007b) and
Szabd, P6czos, Szirtes, and Lérincz (2007), respectively.)

The key step to solve the identification problem is to recognize
that the observation process is also an AR(1) process, if matrix A
can be inverted:

X(t+ 1) = Mx(t) +n(t + 1), (1)

where the observation noise is n(t + 1) = Ae(t + 1). According
to the d-central limit theorem (Petrov, 1958) n(t + 1) is appro-
ximately Gaussian so the predictive matrix (M = AFA™!)
may be estimated by least-mean square approximations and
then the wanted independent driving noise components can be

extracted by applying Independent Component/Subspace Analysis
(ICA/ISA) (Cardoso, 1998; Comon, 1994; Jutten & Herault, 1991)
on the observation noise. An important result (Péczos, Szabé,
Kiszlinger, & Lérincz, 2007; Péczos & Lérincz, 2006) is that - for
a large class of source distributions - separation of independent
subspaces (i.e., the ISA problem) can be solved in two steps. First,
traditional ICA methods yield one dimensional components and
second, the resulting components should be grouped to form
independent subspaces. In turn, ISA of the estimated noise can
simultaneously recover the estimated mixing matrix A, the hidden
state$(t) = /A\*lx(t) as well as the assumed independent subspaces
of the multidimensional driving source components é(t) = A1
). If Ais recovered, then the hidden predictive matrix can also
be approximated (F = A~'MA).

3. A connectionist network implementation

In this section we provide local learning rules for parameter
estimation of the identification task described above. The resulting
algorithms can be translated into a neural network in which
‘activity’ of a ‘neuronal layer’ is represented by a vector, connection
weights between layers or within layer components (i.e., recurrent
connections) are represented by matrices and neurons may realize
nonlinear transformations of their inputs.

3.1. Assumptions and simplifications

For simplicity, rate coding (manifesting analogue values) and
mixed, i.e., positive and negative weights (thus contradicting with
Dale’s Principle) are assumed throughout the derivations, but
the proposed functioning can in principle be also realized by
using either positive coding (Plumbley, 2002) or homogeneous
connection systems (Parisien, Anderson, & Eliasmith, 2008).
Inhibitions (or subtractions) are manifested by separate inhibitory
populations within a layer using feedback or feed-forward
inhibition.

We also assume that after each transformation the resulting
entities (represented by a given layer) get decorrelated and
normalized (i.e. they are subject to whitening). Whitening helps
compressed encoding (Brand, 2006) and it speeds up ICA (Amari,
Cichocki, & Yang, 1996; Cardoso & Laheld, 1996) if applied
during preprocessing. Whitening may take place within a layer
with the help of inhibitory recurrent connections for which
biologically feasible learning rules can also be given (Foldiak,
1989). Interestingly, whitening can also be realized by utilizing
inter-layer feedback connections. The so called forward-inverse
model (Kawato, Hayakawa, & Inui, 1993) or reconstruction
network (Lérincz & Buzsaki, 2000) assumes a loopy structure with
a bottom-up (BU) and a top-down (TD) transformations in which
representation of the input is used to regenerate an estimate of the
input and different constraints can be put on the transformations.
It can be shown that in a reconstruction network the two branches
can learn to invert each other - at least in the pseudo-inverse
sense — applying simple Hebbian rules that we introduce later.
Both whitening and ICA can be realized in a reconstruction network
for which the mathematical details and a possible implementation
scheme will soon be provided.

The different algorithmic tasks and the related learning rules
will be described in separate subsections below.

3.2. Innovation

The first algorithmic step is the estimation of the innovation:
fi(t + 1) = x(t + 1) — Mx(t). The corresponding cost function
JM) = % >, Ix(t + 1) — M x(t)|* leads to the following Hebbian
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