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ARTICLE INFO ABSTRACT

Article history: Many applications of machine learning involve sparse and heterogeneous data. For example, estimation
Received 7 May 2009 of diagnostic models using patients’ data from clinical studies requires effective integration of genetic,
Received in revised form 11 June 2009 clinical and demographic data. Typically all heterogeneous inputs are properly encoded and mapped
Accepted 25 June 2009 onto a single feature vector, used for estimating a classifier. This approach, known as standard inductive
Keywords: learning, is used in most application studies. Recently, several new learning methodologies have emerged.

For instance, when training data can be naturally separated into several groups (or structured), we can
view model estimation for each group as a separate task, leading to a Multi-Task Learning framework.
Model selection Similarly, a setting where the training data are structured, but the objective is to estimate a single
Multi-task learning predictive model (for all groups), leads to the Learning with Structured Data and SVM+ methodology
SVM recently proposed by Vapnik [(2006). Empirical inference science afterword of 2006. Springer|. This paper
SVM-Plus describes a biomedical application of these new data modeling approaches for modeling heterogeneous
data using several medical data sets. The characteristics of group variables are analyzed. Our comparisons
demonstrate the advantages and limitations of these new approaches, relative to standard inductive SVM
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classifiers.
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1. Introduction and motivation

Statistical data-driven computer-aided diagnostics have been
of growing interest in biomedical applications. Such approaches
usually estimate diagnostic models from available (historical)
data. Whereas machine learning and statistical approaches often
pursue similar goals and use similar techniques, there is a key
difference in perspective (Cherkassky & Mulier, 2007). Under
predictive learning, the main goal of modeling is good prediction
(generalization) for future data. In contrast, statisticians view
the probability model as the core of the analysis, with the idea
that optimal predictions will arise from this probability model
accurately estimated from data. Sometimes machine learning
algorithms correspond to statistical models (e.g., mixture models),
but other times the predictions feel more like they are coming from
‘black boxes’ with less statistical interpretation. This distinction
is often known as generative (~statistical) versus discriminative
(~ predictive) modeling. For multivariate sparse data sets common
in biomedical applications, the predictive approach is more pra-
ctical because

(a) there are simply not enough available data samples to
estimate the multivariate distributions (this is known as the curse
of dimensionality); and
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(b) it may be possible to estimate accurate predictive models
that reflect certain properties of unknown distributions (Cherkassky
& Mulier, 2007; Vapnik, 1998, 2006). For example, for classifi-
cation problems, the goal of estimating a decision boundary (for
future predictions) does not require accurate estimation of class
distributions. Moreover, Statistical Learning Theory (also known as
VC theory) (Vapnik, 1998, 2006, 1982) gives mathematical condi-
tions under which good prediction (generalization) is possible with
finite samples, regardless of dimensionality (the number of input
variables).

The price paid for adopting the predictive approach is that
the estimated models may accurately predict, but only in a spe-
cific well-defined sense (known as ‘generalization’). This places
an additional burden on a data modeler, who needs to come up
with a meaningful formalization of an application domain at hand.
In particular, this approach requires close collaboration between
data modelers and clinicians (who provide the data and will use
data-driven predictive models). It also implies that medical re-
searchers/clinicians should understand better conceptual aspects
of predictive learning. Another important difference is that predic-
tive models may not be easily interpretable, because they do not
approximate ‘true’ distributions, but rather imitate certain prop-
erties of unknown distributions.

Future advances in the area of data-driven biomedical applica-
tions are limited by two fundamental factors: (a) high dimension-
ality of the input data (i.e., large number of input variables) and
(b) heterogeneous nature of the input data. High-dimensional, low
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sample size (HDLSS) data are common in many biomedical appli-
cations, especially studies involving genetic data. For example, a
‘typical’ clinical study may result in a data set of a few hundred to
a couple of thousand patients (‘samples’), where each patient has a
few hundred genetic predictors (for instance, ~400 genetic poly-
morphisms), in addition to a few dozen clinical and demographic
inputs. All these heterogeneous inputs may be used as possible
predictors for diagnosing a disease or predicting the outcome of
a medical treatment procedure.

For such data sets, the dimensionality d of the data vector
may be larger than/similar to the sample size n. Such sparse
training data sets present new challenges to classification methods
that estimate classification decision boundaries from HDLSS
data. Note that commonly used discriminative methods (such as
neural networks and support vector machines) require significant
modifications and/or clever preprocessing in dealing with HDLSS
data. Heterogeneous data in biomedical applications may include
clinical, genomic and demographic data used as input variables for
constructing a predictive (diagnostic) model. These inputs can be
viewed as several feature sets, and the challenge is to integrate
such input data from different modalities into learning with sparse
high-dimensional data. There are two principal approaches for
dealing with HDLSS and heterogeneous data (Cherkassky & Mulier,
2007).

The first approach is to adopt a standard inductive learning set-
ting, and to reduce the problem dimensionality via clever pre-
processing and feature extraction. That is, the problem of high-
dimensional input space is addressed by dimensionality reduction
(feature selection, also known as subset selection), and the prob-
lem of heterogeneous data is handled by encoding of all inputs into
the same type. Then a standard inductive classifier (such as Sup-
port Vector Machine (SVM), or a neural network, or logistic regres-
sion) is used to estimate a model. This approach has been success-
fully used in many biomedical and image processing applications
(Camps-Valls, Rojo-Alvarez, & Martinez-Ramon, 2007 ). Commonly
used statistical approaches to modeling genetic data for diagnos-
tic and prognostic classification follow feature selection strategy
(also known as subset selection) where a few strong informative
inputs are selected from a large number of inputs, typically us-
ing greedy feature selection. Selection of inputs in the final model
is performed via extensive use of resampling (Simon, Radmacher,
Dobbin, & McShane, 2003).

The second approach is to investigate new learning settings for
dealing with HDLSS heterogeneous data. This approach is based on
the fundamental principle (due to Vapnik) that for finite sample
estimation problems one should always use the most appropriate
direct formulation of the learning problem rather than a more
general formulation. It can be argued that most recent advances
in statistical learning (i.e., transduction, semi-supervised learning,
single-class learning, multi-task learning) reflect an improved
understanding of the learning problem setting.

Multi-Task Learning, also known as transfer learning, has had
a relatively long history in machine learning. Learning multiple
related tasks simultaneously has been empirically (Ando & Zhang,
2005; Bakker & Heskes, 2004; Evgeniou & Pontil, 2004) as well as
theoretically (Ando & Zhang, 2005; Ben-David & Schuller, 2003)
shown to often significantly improve predictive performance
relative to learning each task independently. So MTL approaches
can benefit applications using HDLSS heterogeneous data where
relatively few data samples per task are available. Most Multi-
Task Learning techniques can be broadly grouped into several
categories, depending on how task relatedness is modeled:

- methods where multiple tasks share the same internal repre-
sentation, such as hidden units in neural networks (Ando &
Zhang, 2005; Bakker & Heskes, 2004; Caruana, 1997; Liao &
Carin, 2005),

- estimating a common set of latent variables consisting of linear
combinations of the original input features, as in Partial Least
Squares (PLS) statistical approaches (Momma & Bennett, 2006),

- probabilistic methods where task relatedness is modeled by
sharing priors (Lawrence & Platt, 2004; Raina, Ng, & Koller,
2006),

- modeling task relatedness via common (shared) features
(Argyriou, Evgeniou, & Pontil, 2006; Obozinski, Taskar, & Jordan,
2006),

- kernel methods where different tasks share common part in
their decision functions (Evgeniou & Pontil, 2004; Liang &
Cherkassky, 2008).

The methods discussed in this paper are most closely related to
the last category.

This paper describes application of novel learning methodolo-
gies, such as SVM+, and Multi Task Learning (MTL), to classification
problems using several medical data sets. The goal is to present
several different ways to model heterogeneous data (as discussed
in Section 2), and then investigate advantages and limitations
of different learning approaches via empirical comparisons, in
Sections 3 and 4. Finally, conclusions and discussion are presented
in Section 5.

2. Approaches for modeling heterogeneous data

In this paper, we consider supervised learning applications
where the training data include additional (group) information
about training samples. Examples include: (1) handwritten digit
recognition where training examples are provided by several
persons, (2) medical diagnosis where a predictive (diagnostic)
model, say for lung cancer, is estimated using a training data set
of male and female patients, etc. Incorporating this additional
information has lead to approaches known as Multi-Task Learning
(Ando & Zhang, 2005; Ben-David, Gehrke, & Schuller, 2002;
Evgeniou & Pontil, 2004; Liang & Cherkassky, 2008) and, more
recently, to Learning with Structured Data (also known as SVM+)
(Vapnik, 2006), as briefly discussed next.

Suppose that the training data can be represented as a union
of t related groups, i.e. each group r € [1,2,...,t] contains
n, samples independently and identically generated from a
distribution P, on x x y. Therefore, the available data are a
union of t > 1 groups: {{X.,Y;},r = 1,...,t}, {X,, Y} =
{xr, ¥} -+, X, Yo 1), and it can be thought of as samples
identically and independently generated from an unknown
distribution P(x, y) = {P;(x,Y), if {x, y} € {X;, Y:}}.

If the group labels of future test samples are not given, the
appropriate formulation is known as “Learning With Structured
Data (LWSD)” (Vapnik, 2006). In this formulation, the goal is to find
the best mapping function f such that the expected loss

Riwsp(w) = fL(f(xs w), ¥)P(x, y)dxdy

is minimized. Note that even though the expected loss is in the
same form as in the supervised learning setting, the difference
is that in the supervised learning setting P is unknown, while in
LWSD it is known that P is a union of t sub-distributions.

On the other hand, if the group labels of future test samples
are given, the problem is formalized as Multi-Task Learning (MTL)
(Ando & Zhang, 2005; Ben-David et al., 2002; Liang & Cherkassky,
2008; Vapnik, 1998). The goal in multi-task learning is to estimate t
related classifiers {f1, f2, . . ., f} so that the sum of expected losses
for each task

t
Run(w) = Y ( [t w.px y)dxdy)

r=1

is minimized.
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