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Abstract

Learning data representations is a fundamental challenge in modeling neural processes and plays an important role in applications such as
object recognition. Optimal component analysis (OCA) formulates the problem in the framework of optimization on a Grassmann manifold and
a stochastic gradient method is used to estimate the optimal basis. OCA has been successfully applied to image classification problems arising in
a variety of contexts. However, as the search space is typically very high dimensional, OCA optimization often requires expensive computational
cost. In multi-stage OCA, we first hierarchically project the data onto several low-dimensional subspaces using standard techniques, then OCA
learning is performed hierarchically from the lowest to the highest levels to learn about a subspace that is optimal for data discrimination based
on the K -nearest neighbor classifier. One of the main advantages of multi-stage OCA lies in the fact that it greatly improves the computational
efficiency of the OCA learning algorithm without sacrificing the recognition performance, thus enhancing its applicability to practical problems. In
addition to the nearest neighbor classifier, we illustrate the effectiveness of the learned representations on object classification used in conjunction
with classifiers such as neural networks and support vector machines.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Learning algorithms for neural network models have been
a focal point (Bishop, 1995; Geman & Bienenstock, 1992).
Bishop (1995) stated that the choice of pre-processing and
feature extraction techniques is “one of the most significant
factors in determining the performance of the final system”. In
the past decades, linear subspace representation methods, such
as Principal Component Analysis (PCA) (Jolliffe, 1986; Turk
& Pentland, 1991), Independent Component Analysis (ICA)
(Comon, 1994; Hyvarinen, Karhunen, & Oja, 2001), Canonical
Correlation Analysis (CCA) (Anderson, 2003; Reiter, Donner,
Langs, & Bischof, 2006) and Linear Discriminant Analysis
(LDA) (Duda, Hart, & Stock, 2000; Zhao, Chellappa,

I An abbreviated version of some portions of this article appeared in Wu, Liu,
and Mio (2007) as part of the IJCNN 2007 Conference Proceedings, published
under IEE copyright.
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& Phillips, 1994), have been widely used for learning
representations suitable for neural networks. For example, Zhu
and Yu (1994) implemented a system for face recognition with
eigenfaces and a backpropagation neural network. Eleyan and
Demirel (2005) proposed a face recognition method in which
features are first extracted using PCA and faces are classified
using feed-forward neural networks. ICA-based recognition
methods, (e.g. Bartlett, Movellen, and Sejnowski (2002) and
Kwak and Pedrycz (2007)), tend to give better recognition
performance than PCA-based methods as they take high-order
statistics of data into account. LDA-based methods, on the other
hand, use class information and try to find an optimal basis
that maximize the between-class scatter while minimizing the
within-class scatter, and are also frequently employed in face
and object recognition (Etemad & Chellappa, 1997).

These classical linear representation methods, in general, are
not optimal for classification or recognition. For example, PCA
and ICA are optimized for data reconstruction and statistical
independence, not for the selection of discriminative features.
CCA is another multivariate statistical method which extracts
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Fig. 1. A synthetic dataset consisting of two classes, each with two clusters of
four points: (a) the data set of two classes (‘+’ and ‘×’) with eight points each
in R2; (b) the one-dimensional subspace obtained from PCA, ICA, and LDA;
(c) a one-dimensional optimal subspaces representation obtained using OCA.

the most coherent features among two data channels. LDA
assumes that the conditional probability distribution of each
class is Gaussian with the same variance. As the distributions
of real images are typically non-Gaussian (e.g. Srivastava,
Liu, and Grenander (2002)), in recognition tasks, there is
no theoretic guarantee of optimality of LDA basis. This is
also evident in comparative studies reported in the literature
(e.g. Belhumeour, Hespanha, and Kriegman (1997) and
Martinez and Kak (2001)). In fact, one can construct examples
in which all the common choices of learning algorithms give
the worst possible performance. Such an example is shown in
Fig. 1, which consists of two classes (‘+’ and ‘×’) with eight
points each, and the points are presented in clusters of four.
It can be shown that the one-dimensional subspace resulting
from PCA, ICA, and LDA coincides with either the horizontal
or the vertical axis. If we use the nearest neighbor classifier
and let a point from each cluster be used for training, the one-
dimensional basis obtained from PCA, ICA, and LDA gives the
worst performance.

It is thus apparent that, in the context of object recognition, a
more relevant question is that of finding a linear representation
that optimally selects discriminating features. Unlike the
classical methods, the recently proposed Optimal Component
Analysis (OCA) (Liu, Srivastava, & Gallivan, 2004; Srivastava
& Liu, 2005) provides a general optimality criterion. The search
for optimal linear representations, or an optimal subspace, is
based on a stochastic optimization process which maximizes
a pre-specified performance function over all subspaces of a
particular dimension and is estimated using a Markov Chain
Monte Carlo (MCMC) type algorithm. OCA exhibits good
performance on face and object recognition. Fig. 1(c) shows an
optimal subspace representation obtained by the OCA method.

The stochastic search techniques employed in OCA
typically result in heavy computational costs, which limits the
applicability of OCA to practical problems that involve feature
extraction and object recognition. As an example, consider
a facial recognition experiment based on the ORL data set
(Samaria & Harter, 1994). OCA learning takes approximately
one day to run 1000 iterations to estimate an optimal subspace.
Obviously, this is not practical for most object recognition
applications. In our previous work, a two-stage strategy was
proposed to address this problem (Wu, Liu, Mio, & Gallivan,
in press). In this approach, the input data is first reduced
to a lower dimension using methods such as PCA or LDA;
then, the OCA search is performed in the reduced space. This

strategy leads to significant computational gains. However, it is
generally difficult to determine a good choice for the reduced
subspace. In this paper, a multi-stage strategy is proposed
to address this problem. The idea of multi-stage OCA (M-
OCA) was presented in a previous short paper (Wu et al.,
2007): the data is first hierarchically reduced into several levels
using shrinkage matrices; then, the OCA search is performed
hierarchically from the lowest to the highest levels. The basis is
expanded progressively from the optimal basis obtained in the
previous level. As the learning process of each level starts with a
good initial selection from the previous level, M-OCA achieves
good recognition performance. Also, since the dimensions of
the Grassmann manifolds at the lower levels are much smaller
than that of the Grassmannian in the original space, M-OCA
reduces the computational costs associated with the original
algorithm significantly, thus making OCA learning feasible in
applications.

The rest of the paper is organized as follows: Section 2
gives a brief review of OCA and the proposed M-OCA method
is presented in Section 3; A comprehensive study of the
performance of the M-OCA algorithm is presented in Section 4;
Section 5 concludes the paper with a summary and a discussion
of future work.

2. Optimal component analysis

Optimal Component Analysis is a dimension reduction
technique designed to find an optimal subspace (of a prescribed
dimension) of feature space that optimizes the ability of the
nearest neighbor classifier to index and classify images or other
data. The measurement of optimality is based on training data
and the algorithm yields an orthonormal basis of the estimated
optimal subspace. More specifically, let U ∈ Rn×d be a matrix
whose columns form an orthonormal basis of a d-dimensional
subspace of Rn , where n is the size of the input image and d is
the dimension of the desired subspace (generally n � d). For
an image I , viewed as an n-vector, the vector of coefficients is
given by α(I, U ) = U T I ∈ Rd and represents the orthogonal
projection of I onto the subspace SU spanned by the columns
of U . Suppose the training data consists of representatives of C
classes of images, with each class represented by ktrain images
denoted by Ic,1, . . . , Ic,ktrain , where c = 1, . . . , C . Let

ρ(Ic,i , U ) =

min
c′ 6=c, j

D(Ic,i , Ic′, j ; U )

min
j 6=i

D(Ic,i , Ic, j ; U ) + ε
. (1)

The numerator is the distance from Ic,i to the closest training
image not in its class and the denominator is the distance from
Ic,i to the closest training image in the same class. Here, D
denotes Euclidean distance; that is,

D(I1, I2; U ) = ‖α(I1, U ) − α(I2, U )‖, (2)

where ‖ · ‖ is the usual 2-norm. In Eq. (1), ε > 0 is a small
number introduced to avoid division by zero. Note that large
values of ρ are desirable, since this means that Ic,i will be
closer to its class than to other classes after projection onto
the subspace SU . A performance function F is defined to
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