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a b s t r a c t 

In multi-label learning, since different labels may have some distinct characteristics of their own, multi- 

label learning approach with label-specific features named LIFT has been proposed. However, the con- 

struction of label-specific features may encounter the increasing of feature dimensionalities and a large 

amount of redundant information exists in feature space. To alleviate this problem, a multi-label learning 

approach FRS-LIFT is proposed, which can implement label-specific feature reduction with fuzzy rough 

set. Furthermore, with the idea of sample selection, another multi-label learning approach FRS-SS-LIFT 

is also presented, which effectively reduces the computational complexity in label-specific feature reduc- 

tion. Experimental results on 10 real-world multi-label data sets show that, our methods can not only 

reduce the dimensionality of label-specific features when compared with LIFT, but also achieve satisfac- 

tory performance among some popular multi-label learning approaches. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Nowadays, multi-label learning problem has received an in- 

creased attention in real-world applications. For example, in se- 

mantic annotation of images [3,16,26,49] , a picture can be an- 

notated as camel, desert and landscape. In text categorization 

[5,11,17,29] , a document may belong to several given topics, includ- 

ing economics, finance or GDP. In bioinformatics [6,13,50] , each 

gene may be associated with a set of functional classes, such as 

metabolism, transcription and protein synthesis. In all cases above, 

each sample may be associated with more than one label simulta- 

neously and predefined labels for different samples are not mutu- 

ally exclusive but may overlap. This situation is distinct from the 

traditional single-label learning where predefined labels are mutu- 

ally exclusive, each sample only belongs to a single label. 

Over the last decade, many multi-label learning approaches 

have been witnessed [12,28,58] . Generally, the existing methods 

can be grouped into two main categories [43] , i.e., algorithm 
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adaptation methods and problem transformation methods. Algo- 

rithm adaptation methods extend specific single-label learning al- 

gorithms to directly handle multi-label data by modifying some 

constraint conditions, such as AdaBoost.MH [40] , ML- k NN [59] , 

MLNB [60] , and RankSVM [9] . Problem transformation methods, 

transform the multi-label task into one or more corresponding 

single-label ones and then handle them one by one through tra- 

ditional methods. The well-known problem transformation meth- 

ods include binary relevance (BR), label power set (LP) and pruned 

problem transformation (PPT). BR [3] learns a binary classifier for 

each label independently and predicts each of the labels separately, 

so it cuts up the relationship among different labels. LP [44] con- 

siders each unique set of labels that exists in a multi-label train- 

ing set as a new single-label multi-value class. Though this method 

considers the correlations among different labels, it easily leads to 

a higher time consumption since the number of new classes is 

increased exponentially with the increasing of labels. Meanwhile, 

some new classes created by a few samples may lead to class un- 

balance problem. PPT [34] abandons the new classes associated 

with extremely small number of samples or assigns these sam- 

ples with new labels that can create accepted classes, while some 

abandoned classes will lead to the loss of multi-label informa- 

tion. Although above methods have achieved good performance in 

multi-label learning, they make use of the same features to achieve 
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the learning purposes in different labels. Actually, different labels 

may have distinct characteristics of their own, and these charac- 

teristics are more inclined to judge whether labels belong to a 

specific sample. Fortunately, Zhang [61,62] has proposed the rep- 

resentative LIFT algorithm and validated the effectiveness of con- 

structing label-specific features. For each label, LIFT employs clus- 

tering analysis in the positive and negative samples respectively, 

and then constructs label-specific features by checking the dis- 

tances between the sample and all the clustering centers. (There is 

not any semanteme for constructed label-specific features, which 

can be regarded as a set of distances.) However, construction of 

label-specific features may encounter the increasing of feature di- 

mensionalities, and a large amount of redundant information ex- 

ists in feature space. As a result, the structure information between 

different sam ples will be disrupted, and even more be destroyed, 

which leads to the decreasing of the performance of multi-label 

learning approach. To alleviate this problem, an effective solution 

is to perform dimension reduction in label-specific features. 

Rough set theory is a good mathematical tool for describing 

incomplete and uncertain data. With over 30 years of develop- 

ment, it has been widely applied in attribute reduction [18,30] , 

feature selection [20,22,31,42,55] , rule extraction [25,38] and un- 

certainty reasoning [46] . Numerous researchers [31,32] have used 

the various rough set models for dealing with single-label data 

analyses in real-world applications. Recently, some researchers 

[53,54,56,57] begin to attempt at carrying out multi-label classi- 

fication via rough set approaches, however, all of them determine 

different labels in the same feature space, which contradicts the 

fact that different labels may have distinct characteristics of their 

own. In this paper, with the idea of attribute reduction based on 

fuzzy rough set, we will develop a multi-label learning approach 

with label-specific feature reduction (FRS-LIFT), which uses the ap- 

proximation quality to evaluate the significance of specific dimen- 

sion and takes the forward greedy search strategy. Furthermore, 

sample selection is an effective data compression technique, which 

can reduce the time and memory consumption in attribute reduc- 

tion. On the basis of FRS-LIFT, another multi-label learning ap- 

proach with label-specific feature reduction by sample selection 

(FRS-SS-LIFT) will be presented at the same time. To validate the 

effectiveness of FRS-LIFT and FRS-SS-LIFT, we conduct comprehen- 

sive experiments on 10 real-world multi-label data sets. Experi- 

mental study shows clear advantages of FRS-LIFT and FRS-SS-LIFT 

over various multi-label learning algorithms. 

The rest of this paper is organized as following. Section 2 in- 

troduces the formal definition of multi-label learning’s framework 

and LIFT approach. Section 3 provides some background materi- 

als on fuzzy rough set and sample selection, and then the details 

of our FRS-LIFT and FRS-SS-LIFT are presented. Section 4 describes 

data sets, evaluation metrics, experimental settings, and then ana- 

lyzes the results of comparative studies on 10 multi-label data sets. 

Finally, Section 5 summarizes and sets up several issues for future 

work. 

2. Multi-label learning 

2.1. Multi-label learning’s framework 

Let X = R 

d be the d -dimensional sample space and L = 

{ l 1 , l 2 , . . . , l m 

} be the finite set of m possible labels. T = { (x i , Y i ) | i = 

1 , 2 , . . . , n } denotes the multi-label training set with n labeled sam- 

ples, where x i ∈ X is a d -dimensional feature vector such that 

x i = [ x 1 
i 
, x 2 

i 
, . . . , x d 

i 
] , Y i ⊆L is the set of labels associated with x i . 

The goal of multi-label learning is to produce a real-valued 

function f : X × P (L ) → R . In detail, for each x i ∈ X , a prefect learn- 

ing system will tend to output larger values for labels in Y i than 

those not in Y i [59] , i.e., for any l, l ′ ∈ L , if l ∈ Y i and l ′ �∈ Y i , f ( x i , l ) 

> f ( x i , l 
′ ) holds. 

2.2. LIFT approach 

2.2.1. Construction for label-specific features 

LIFT aims to improve the learning performance of multi-label 

learning system through generating distinguishing features which 

capture the specific characteristics of each label l k ∈ L . To achieve 

this goal, LIFT takes into account intrinsic connection between dif- 

ferent samples in all labels. Specifically, with respect to each label 

l k , the training samples are divided into two categories, i.e., the 

set of positive training samples P k and the set of negative training 

samples N k , such that: 

P k = 

{
x i 
∣∣(x i , Y i ) ∈ T , l k ∈ Y i 

}
; (1) 

N k = 

{
x i 
∣∣(x i , Y i ) ∈ T , l k / ∈ Y i 

}
. (2) 

In other words, the training sample x i belongs to P k if x i has label 

l k ; otherwise, x i is included in N k . 

To consider intrinsic connection among different samples, LIFT 

employs clustering analysis on P k and N k , respectively. Following 

Zhang’s research [61,62] , k -means algorithm [21] is adopted to par- 

tition P k into m 

+ 
k 

disjoint clusters whose clustering centers are de- 

noted by { p k 
1 
, p k 

2 
, . . . , p k 

m 

+ 
k 

} . Similarly, N k is also partitioned into m 

−
k 

disjoint clusters whose clustering centers are { n k 
1 
, n k 

2 
, . . . , n k 

m 

−
k 

} . LIFT 

treats clustering information gained from P k and N k as equal im- 

portance, and then the numbers of clusters on P k and N k are set to 

be the same, i.e., m 

+ 
k 

= m 

−
k 

= m k . Specifically, the number of clus- 

ters for both positive samples and negative samples is: 

m k = 

⌈
δ · min (| P k | , | N k | ) 

⌉
, (3) 

where | · | represents the cardinality of a set, δ ∈ [0, 1] is the ratio 

parameter for controlling the number of clusters. 

The above two groups of clustering centers describe inner 

structures of positive samples P k and negative samples N k , on this 

basis, label-specific features can be constructed in the form of: 

ϕ k (x i ) = 

[
d(x i , p 

k 
1 ) , . . . , d(x i , p 

k 
m k 

) , d(x i , n 

k 
1 ) , . . . , d(x i , n 

k 
m k 

) 
]
, (4) 

where d ( ·, ·) represents the distance between two samples. In lit- 

eratures [61,62] , Euclidean metric is used to calculate sample dis- 

tance. Actually, ϕ k is a mapping from the original d -dimensional 

sample space X to a new 2 m k -dimensional label-specific feature 

space LIFT k , i.e., ϕ k : X → LIFT k . 

2.2.2. Induction for classification models 

LIFT induces a family of m classification models { f 1 , f 2 , . . . , f m 

} 
in the constructed label-specific feature spaces LIFT k (1 ≤ k ≤ m ). 

Formally, for each l k ∈ L , a binary training set T ∗
k 

with n samples is 

created from the training set T according to the mapping ϕ k , such 

that: 

T ∗k = 

{
(ϕ k (x i ) , φ(Y i , l k )) 

∣∣(x i , Y i ) ∈ T 
}
, (5) 

where φ(Y i , l k ) = +1 if l k ∈ Y i ; otherwise, φ(Y i , l k ) = −1 . Based on 

the binary training set T ∗
k 
, any binary learner can be employed to 

induce a classification model f k : LIFT k → R for l k . 

Given an unseen sample x ′ ∈ X , the predicted label set for x ′ is 

Y ′ = { l k | f (ϕ k (x ′ ) , l k ) > 0 , 1 ≤ k ≤ m } . 
3. Multi-label learning with label-specific feature reduction 

3.1. Fuzzy rough set 

To fuse rough set approaches into machine learning problems, 

we will introduce the classification learning task instead of the 
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