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a b s t r a c t

Autonomous robots interacting with human users need to build and continuously update scene
representations. This entails the problem of rapidly learning to recognize new objects under user
guidance. Based on analogies with human visual working memory, we propose a dynamical field
architecture, in which localized peaks of activation represent objects over a small number of simple
feature dimensions. Learning consists of laying down memory traces of such peaks. We implement the
dynamical field model on a service robot and demonstrate how it learns 30 objects from a very small
number of views (about 5 per object are sufficient). We also illustrate how properties of feature binding
emerge from this framework.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Autonomous robots generate flexible behavior based on their
own sensory information. One defining feature of autonomous
robots is that they operate in “natural environments”, that is,
environments that are not specifically designed for the robots’
operation, are not metrically calibrated, and may change over
time. Natural environments are difficult to model, requiring
non-conventional engineering approaches such as learning from
experience. One reason why autonomous robots need to be able
to deal with such environments is that they are often expected
to share environments with human users. Typical scenarios
involving robot–human interaction are service robots, production
assistants, support robotics in care or clinical settings, as well
as entertainment robotics and robotic interfaces to information
services. In many of these cases, the human user will be directing
the attention and action of the robot onto objects in the shared
environment. This requires the robot to perceive these objects and
to be able to understand commands referring to the objects as well
as to communicate about the objects.

Building scene representations is thus a central task that must
be solved in most autonomous robotics scenarios, and certainly in
all robotic scenarios involving goal-directed interaction with hu-
man users. To build scene representations that support interaction
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with human users, relevant objects must be segmented and
recognized, and pose parameters must be estimated. Recogni-
tion involves associating objects with labels that can be used in
communication with the human user.

Recognition in the context of scene representation differs from
the general object recognition problem of computer vision. That
latter problem is still largely unsolved, in particular, when objects
are embedded in natural environments. Recognizing objects
within robotic scenes is both a more difficult and a much simpler
problem than general object recognition in computer vision. The
added difficulty comes from the requirement that new objects are
learned from a very small number of views, ideally a single view,
typically a handful of views. The humanuserwill teach newobjects
to the robotic system by directing attention to a part of the scene
(e.g., through pointing) and labeling the object. The user may also
give corrective input when the robot system tries to recognize the
object in new poses. The number of times a human user is willing
to provide such teaching signals is very limited, however. Another
aspect of this difficulty is the required flexibility in which a single
label may refer to different objects at different moments in time,
such as when a new exemplar of a category of objects is being
referred to. The robotic recognition systemmust be able to update
object representations, replacing no longer relevant information
with new input on the same fast timescale that human users find
tolerable.

These difficulties are off-set by the fact that in typical robotic
scenarios only a quite limited number of objects is relevant
for meaningful interaction and object-directed action within
a scene. All action within the scene can be used to update
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object representations. User feedbackmay be available throughout
operation, so that a small error rate is tolerable. Moreover, many
robotic scenarios provide relatively simple viewing conditions.
Objects to which a robot’s attention or action is drawn may
typically be placed so that the robot has them in view. Scenes
will not be excessively cluttered with objects, occlusions will be
limited in extent, recognition does not necessarily have to be
successful from only limited component views of the object. The
robotic system may also be endowed with a priori knowledge
about learned objects. For instance, the approximate visual size of
objects may be inferred from the learning trial and the position of
the segmented object in the visual scene.

Humans themselves are, of course, extremely efficient in this
category of visual tasks. In fact, our visual perception of our
surroundings is, in large part, a form of scene representation
in which an inventory of action-relevant items or items which
had been closely examined are represented in detail, while
visual details of the larger environment are much less reliably
retained. A dramatic demonstration of this cognitive nature of
scene representation comes from failures to detect change when
visual transients are masked and the task directs attention at non-
changing parts of the visual array (O’Regan, Rensink, & Clark, 1999).

This human capacity may be one motivation to search for
neuronally inspired solutions to the problem of building scene
representations. A look at the psychophysics of scene perception
is, in fact, helpful in more precisely defining the problem. There
are two limit cases that touch upon the problem of building
scene representations and have been extensively studied both
experimentally and theoretically. The first limit case involves
visual working memory as a basis for making judgments about
visual scenes (Henderson & Hollingworth, 1999). Such judgments
may involve the detection of a particular target object in visual
search, the detection of change in discrimination paradigms, or
the estimation of object features. Some of these operations involve
visual working memory characterized by limited capacity and
a temporal contiguity constraint, so that new objects interfere
with objects previously held in working memory. Set effects, the
influence of context and, relatedly, the role of reference frames
point, however, to the longer-term factors (Baddeley, 1986; Fuster,
1995).

Theoretical accounts for this form of scene representation is
based on the notion of feature dimensions, a small number of
which is required to characterize each object (Treisman, 1998).
Cortical feature maps form the neurophysiological backdrop for
this conception. These maps are assumed to separately represent
different feature dimensions such as orientation, spatial frequency,
or color. When an object is segmented and brought into the
foreground (in the language of this field, when attention is
focused on the object), the feature values along the different
feature dimensions are bound into an “object file”. This idea
accounts for how tasks involving conjunctions of different feature
dimensions differ through “feature binding” from tasks that can
be solved on the basis of any individual feature dimension. How
such binding in an object file would occur in neural terms is
not quite clear. An alternative account postulates that there are
specific neuronal mechanisms for binding, involving, for instance,
correlation between neural spike trains (Malsburg, 1981; Raffone
& Wolters, 2001). The neurophysiological reality of such a binding
mechanism as well as its functional effectiveness are debated (see,
e.g., the special issue of Neuron in 1999 (Volume 24, pages 7–125)).

The second limit case is object recognition on the basis of
object categories learned over much longer timescales. In this
work, the fundamental tension is between two requirements
(Riesenhuber & Poggio, 1999; Serre, Wolf, & Poggio, 2005).
The first, selectivity, is the capacity to discriminate between
objects whose images are highly correlated. The most dramatic

example is probably human face recognition: the images formed
by faces are very similar across different faces, especially if
compared to other kinds of visual objects, but humans are
particularly astute at discriminating different faces. The second
requirement is invariance of recognition under a broad set of
image transformations that enables humans to recognize objects
from different viewing angles, under partial occlusion, and at
variable visual distances. A neurophysiologically based approach
to this problem (Riesenhuber & Poggio, 2000) treats this form
of object recognition as a largely feedfoward computational
problem, in which complex features are extracted by neurons
with relatively low spatial resolution. Pooling and a hierarchical
organization of such feature detectors lead to inputs from which
the winner category can be determined. In this framework, the
problem of binding different features belonging to the same
object does not arise as a separate problem. Complex features,
in a sense, already bind values along any elementary feature
dimension (Riesenhuber & Poggio, 1999). Alternatively, neuronal
interaction may contribute to binding within such a feedforward
architecture (Wersing, Steil, & Ritter, 2001).

When humans perceive and operate in a scene, they perform
both forms of object recognition. The particular exemplars of
object categories are perceived and memorized in their particular
rendering and pose (Henderson & Hollingworth, 1999). But
humans also recognize object categories, and may use such
categorical perception to structure discourse about the objects
in a scene. In fact, their perceptual categories influence the
representations on which such visual working memory and visual
discrimination is based (Schyns, Goldstone, & Thibaut, 1998).

The problem an autonomous robotmust solvewhen it interacts
with a human user in a given environment is somewhere halfway
between these two limit cases. Working memory is a first step
toward building scene representations, but is too fragile and
short term to achieve that building by itself. Some longer-term
maintenance of acquired knowledge about objects is required. That
may still fall short of the extensive learning involved in acquiring
new object categories for invariant recognition.

We propose that Dynamical Field Theory is a framework, within
which a neural approach to working memory may be extended
to endow representations with the longer-term stability required
for scene representations, while at the same time remaining
close to ongoing sensory input and providing the flexibility
and fast learning capabilities needed to maintain and update
scene representations. Dynamic Field Theory is a neuronally
based theoretical approach to understanding embodied cognition.
Originally developed to understand howmovements are prepared
(Bastian, Schöner, & Riehle, 2003; Erlhagen & Schöner, 2002), the
ideas have been applied to a wide range of behaviors ranging from
perception (Giese, 1999; Hock, Schöner, & Giese, 2003) to spatial
memory (Schutte, Spencer, & Schöner, 2003).

Dynamic fields are distributions of neuronal activation defined
directly over relevant perceptual or motor parameters (e.g. feature
dimensions ormovement parameters) rather than over the cortical
surface. Conceptually, they are neuronal networks, in which
the discrete sampling by individual neurons is replaced by a
continuous neural field that represents the metric structure of
the represented dimensions. Localized peaks of activation are
units of representation. When the activation level in the peaks
exceed a threshold (conventionally chosen to be zero), such peaks
represent perceptual or motor decisions, both in the sense of
detection decisions and in the sense of selection among competing
inputs. The location of such peaks along the feature or motor
dimension represents the outcome of estimation processes and
encodes metric information about stimuli or motor states. The
neuronal dynamics of such activation fields is governed both by
inputs and by neuronal interaction, which stabilizes localized
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