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ABSTRACT

Autonomous learning is one of the hallmarks of human and animal behavior, and understanding the
principles of learning will be crucial in order to achieve true autonomy in advanced machines like
humanoid robots. In this paper, we examine learning of complex motor skills with human-like limbs.
While supervised learning can offer useful tools for bootstrapping behavior, e.g., by learning from
demonstration, it is only reinforcement learning that offers a general approach to the final trial-and-error
improvement that is needed by each individual acquiring a skill. Neither neurobiological nor machine
learning studies have, so far, offered compelling results on how reinforcement learning can be scaled to
the high-dimensional continuous state and action spaces of humans or humanoids. Here, we combine
two recent research developments on learning motor control in order to achieve this scaling. First, we
interpret the idea of modular motor control by means of motor primitives as a suitable way to generate
parameterized control policies for reinforcement learning. Second, we combine motor primitives with the
theory of stochastic policy gradient learning, which currently seems to be the only feasible framework
for reinforcement learning for humanoids. We evaluate different policy gradient methods with a focus
on their applicability to parameterized motor primitives. We compare these algorithms in the context of
motor primitive learning, and show that our most modern algorithm, the Episodic Natural Actor-Critic
outperforms previous algorithms by at least an order of magnitude. We demonstrate the efficiency of this
reinforcement learning method in the application of learning to hit a baseball with an anthropomorphic

robot arm.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

In order to ever leave the well-structured environments of
factory floors and research labs, future robots will require the
ability to acquire novel behaviors and motor skills as well as to
improve existing ones based on rewards and costs. Similarly, the
understanding of human motor control would benefit significantly
if we can synthesize simulated human behavior and its underlying
cost functions based on insight from machine learning and
biological inspirations. Reinforcement learning is probably the
most general framework in which such learning problems of
computational motor control can be phrased. However, in order to
bring reinforcement learning into the domain of human movement
learning, two deciding components need to be added to the
standard framework of reinforcement learning: first, we need a
domain-specific policy representation for motor skills, and, second,
we need reinforcement learning algorithms which work efficiently
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with this representation while scaling into the domain of high-
dimensional mechanical systems such as humanoid robots.
Traditional representations of motor behaviors in robotics are
mostly based on desired trajectories generated from spline inter-
polations between points, i.e., spline nodes, which are part of a
longer sequence of intermediate target points on the way to a
final movement goal. While such a representation is easy to
understand, the resulting control policies, generated from a
tracking controller of the spline trajectories, have a variety of
significant disadvantages, including that they are time indexed and
thus not robust towards unforeseen disturbances, that they do not
easily generalize to new behavioral situations without complete
recomputation of the spline, and that they cannot easily be coor-
dinated with other events in the environment, e.g., synchronized
with other sensory variables like visual perception during catch-
ing a ball. In the literature, a variety of other approaches for pa-
rameterizing movement have been suggested to overcome these
problems, see [jspeert, Nakanishi, and Schaal (2002, 2003) for more
information. One of these approaches proposed using parame-
terized nonlinear dynamical systems as motor primitives, where
the attractor properties of these dynamical systems defined the
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desired behavior (Ijspeert et al., 2002, 2003). The resulting frame-
work was particularly well suited for supervised imitation learn-
ing in robotics, exemplified by examples from humanoid robotics
where a full-body humanoid learned tennis swings or complex
polyrhythmic drumming patterns. One goal of this paper is the ap-
plication of reinforcement learning to both traditional spline-based
representations as well as the more novel dynamic system based
approach.

However, despite the fact that reinforcement learning is the
most general framework for discussing the learning of movement
in general, and motor primitives for robotics in particular,
most of the methods proposed in the reinforcement learning
community are not applicable to high-dimensional systems such
as humanoid robots. Among the main problems are that these
methods do not scale beyond systems with more than three or
four degrees of freedom and/or cannot deal with parameterized
policies. Policy gradient methods are a notable exception to this
statement. Starting with the pioneering work' of Gullapali and
colleagues (Benbrahim & Franklin, 1997; Gullapalli, Franklin, &
Benbrahim, 1994) in the early 1990s, these methods have been
applied to a variety of robot learning problems ranging from
simple control tasks (e.g., balancing a ball on a beam (Benbrahim,
Doleac, Franklin, & Selfridge, 1992), and pole balancing (Kimura
& Kobayashi, 1998)) to complex learning tasks involving many
degrees of freedom such as learning of complex motor skills
(Gullapalli et al., 1994; Mitsunaga, Smith, Kanda, Ishiguro, & Hagita,
2005; Miyamoto et al., 1995, 1996; Peters & Schaal, 2006; Peters,
Vijayakumar, & Schaal, 2005a) and locomotion (Endo, Morimoto,
Matsubara, Nakanishi, & Cheng, 2005; Kimura & Kobayashi, 1997;
Kohl & Stone, 2004; Mori, Nakamura, aki Sato, & Ishii, 2004;
Nakamura, Mori, & Ishii, 2004; Sato, Nakamura, & Ishii, 2002;
Tedrake, Zhang, & Seung, 2005).

The advantages of policy gradient methods for parameterized
motor primitives are numerous. Among the most important ones
are that the policy representation can be chosen such that it is
meaningful for the task, i.e., we can use a suitable motor primitive
representation, and that domain knowledge can be incorporated,
which often leads to fewer parameters in the learning process
in comparison to traditional value function based approaches.
Moreover, there exist a variety of different algorithms for policy
gradient estimation in the literature, most with rather strong
theoretical foundations. Additionally, policy gradient methods can
be used model-free and therefore also be applied to problems
without analytically known task and reward models.

Nevertheless, many recent publications on applications of
policy gradient methods in robotics overlooked the newest
developments in policy gradient theory and their original roots
in the literature. Thus, a large number of heuristic applications of
policy gradients can be found, where the success of the projects
mainly relied on ingenious initializations and manual parameter
tuning of algorithms. A closer inspection often reveals that the
chosen methods might be statistically biased, or even generate
infeasible policies under less fortunate parameter settings, which
could lead to unsafe operation of a robot. The main goal of this
paper is to discuss which policy gradient methods are applicable
to robotics and which issues matter, while also introducing some
new policy gradient learning algorithms that seem to have superior

1 Note that there has been earlier work by the control community, see e.g., Dyer
and McReynolds (1970), Hasdorff (1976) and Jacobson and Mayne (1970), which
is based on exact analytical models. Extensions based on learned, approximate
models originated in the literature on optimizing government decision policies,
see Werbos (1979), and have also been applied in control (Atkeson, 1994; Morimoto
& Atkeson, 2003). In this paper, we limit ourselves to model-free approaches as the
most general framework, while future work will address specialized extensions to
model-based learning.

performance over previously suggested methods. The remainder
of this paper will proceed as follows: firstly, we will introduce
the general assumptions of reinforcement learning, discuss motor
primitives in this framework and pose the problem statement of
this paper. Secondly, we will analyze the different approaches
to policy gradient estimation and discuss their applicability to
reinforcement learning of motor primitives. We focus on the
most useful methods and examine several algorithms in depth.
The presented algorithms in this paper are highly optimized
versions of both novel and previously published policy gradient
algorithms. Thirdly, we show how these methods can be applied
to motor skill learning in humanoid robotics and show learning
results with a seven degree of freedom, anthropomorphic SARCOS
Master Arm.

1.1. General assumptions and problem statement

Most robotics domains require the state-space and the action
spaces to be continuous and high dimensional such that learning
methods based on discretizations are not applicable for higher-
dimensional systems. However, as the policy is usually imple-
mented on a digital computer, we assume that we can model the
control system in a discrete-time manner and we will denote the
current time step by k. In order to take possible stochasticity of the
plant into account, we denote it using a probability distribution

Xir1 ~ P (Rir1 |, W) (1)

where u, € RM denotes the current action, and x;, X,,1 € RV
denote the current and the next state respectively. We furthermore
assume that actions are generated by a policy

w, ~ 1y (W |Xy) (2)

which is modeled as a probability distribution in order to
incorporate exploratory actions; for some special problems, the
optimal solution to a control problem is actually a stochastic
controller, see e.g., Sutton, McAllester, Singh, and Mansour (2000).
The policy is parameterized by some policy parameters § € RX
and assumed to be continuously differentiable with respect to its
parameters #. The sequence of states and actions forms a trajectory
(also called history or roll-out) denoted by T = [xg.y, Uo.y] Where H
denotes the horizon, which can be infinite. At each instant of time,
the learning system receives a reward denoted by r (X, u;) € R.
The general goal of policy gradient reinforcement learning is to
optimize the policy parameters # € R¥ so that the expected return

J6) = Lk {Zakrk} 3)

z k=0

is optimized where g, denote time-step-dependent weighting
factors and ay is a normalization factor in order to ensure that
the normalized weights a/a, sum up to one. We require that the
weighting factors fulfill a;,, = a,a, in order to be able to connect to
the previous policy gradient literature; examples are the weights
a, = y* for discounted reinforcement learning (where y is in [0, 1])
where a;, = 1/(1 — y); alternatively, they are set to a, = 1 for the
average reward case where ay, = H. In these cases, we can rewrite
a normalized expected return in the form

J(0) = /xd”(x)/wn(ulx)r(x, u)dxdu (4)

2 Note, that throughout this paper, we will use k and I for denoting discrete steps,
m for update steps and h for the current vector element, e.g., 8, denotes the hth
element of 6.
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