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Multiple model-based reinforcement learning explains dopamine
neuronal activity

Mathieu Bertina,b,∗, Nicolas Schweighoferc, Kenji Doyaa,d

a ATR Computational Neuroscience Labs, 2-2-2 Hikaridai, “Keihanna Science City”, Kyoto 619-0288, Japan
b Laboratoire d’Informatique de Paris 6, Universite Paris 6 Pierre et Marie Curie, 4 place Jussieu 75005, Paris, France

c Department of Biokinesiology and Physical Therapy, University of Southern California, 1540 E. Alcazar St. CHP 155, Los Angeles 90089-9006, USA
d Neural Computation Unit, Initial Research Project Laboratory, Okinawa Institute of Science and Technology, 12-22 Suzaki, Gushikawa,

Okinawa, 904-2234, Japan

Received 18 February 2005; accepted 11 April 2007

Abstract

A number of computational models have explained the behavior of dopamine neurons in terms of temporal difference learning. However, earlier
models cannot account for recent results of conditioning experiments; specifically, the behavior of dopamine neurons in case of variation of the
interval between a cue stimulus and a reward has not been satisfyingly accounted for. We address this problem by using a modular architecture, in
which each module consists of a reward predictor and a value estimator. A “responsibility signal”, computed from the accuracy of the predictions
of the reward predictors, is used to weight the contributions and learning of the value estimators. This multiple-model architecture gives an
accurate account of the behavior of dopamine neurons in two specific experiments: when the reward is delivered earlier than expected, and when
the stimulus–reward interval varies uniformly over a fixed range.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Reacting correctly to its environment requires an animal
to continuously anticipate the consequences of its observa-
tions and actions. Understanding how these predictions are con-
structed, through statistical inference of the current observa-
tions and memory of past experiences, is therefore critical. In
the simple case of classical conditioning experiments, a reward
is delivered shortly after a cue stimulus. Through repeated pair-
ing of this conditioned stimulus and a reward, the animal learns
to use the stimulus as a predictor of the occurrence and tim-
ing of the following reward. The issue we address in this paper
is the prediction of the precise timing of the stimulus–reward
interval (SRI). We propose a new model showing how animals
can learn to associate a number of possible SRI to a single stim-
ulus. Our model notably offers an explanation for two otherwise
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puzzling experimental results concerning the role of dopamine
when the SRI varies.

Direct evidence from electrophysiological recordings in
monkeys (Montague, Dayan, & Sejnowski, 1996; Schultz,
1998) and indirect evidence from fMRI studies in humans
(Pagnoni, Zink, Montague, & Berns, 2002) during these simple
conditioning experiments strongly suggest that the activity of
dopamine (DA) neurons encode the error between predicted
reward and actual reward. Early in training, a burst of DA
neurons activity occurs at the time of the reward delivery. As
training progresses, this burst disappears, and instead a burst
of activity occurs at the time of the cue stimulus. If however,
the reward is unexpectedly not delivered in one trial, there is a
“dip” in DA activity, precisely at the time when the reward was
supposed to be delivered.

Several early computational models (Moore et al., 1986;
Sutton & Barto, 1990) use temporal difference (TD) methods
(Sutton, 1988) to describe experimental results of the
conditioned nictitating membrane response. Application of
TD learning theory to DA measurements in later studies
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(Daw & Touretzky, 2002; Montague et al., 1996; Schultz,
Dayan, & Montague, 1997; Suri & Schultz, 1999), could
accurately reproduce DA neuron activity during simple
conditioning in terms of prediction error. TD learning is a real-
time learning strategy aiming at building accurate predictions
based on past experience. The predictions are computed as a
“value” function, a sum of the expected future rewards. At
each instant, predictions are compared to actual outcomes; the
error in prediction (TD error) is then used to update the value
function.

In these earlier implementations of the TD learning theory
– for consistency, we will only refer to the tapped delay line
model (Montague et al., 1996) – time is sequenced in steps. The
current state is implemented as a row vector s(t) with si (t) = 1
if i is the time steps elapsed since the stimulus, and s j (t) = 0
otherwise. At each time step, the agent builds a value function,
V (t), prediction of future (discounted) rewards:

V (t0) =

∞∑
t=t0

γ tr(t) (1)

where γ (0 < γ < 1) is a discounting parameter. Note that
in the typical simple conditioning experiment, there is only
one reward per trial, and the value function simply equals one
discounted reward.

In neural network implementations, the value function of the
current state is computed by the inner product:

V (t) = s(t) ∗ (w(t))T (2)

with w(t) a weight row vector, and (w(t))T its transpose.
Through learning, these weights are updated at each time step
according to the current prediction error:

w(t) = w(t) + ηs(t)δ(t) (3)

where η a learning rate and δ(t) the TD error (scalar), which
models the DA neurons’ activity, and is given by:

δ(t) = r(t) + γ V (t + 1) − V (t). (4)

During learning, the agent gradually builds a value function that
correctly predicts the incoming reward. After learning, if the re-
ward is given, the TD error is null at all time, except at the time
of the conditioned stimulus. If however a reward is not given,
the TD error is negative at the time the reward was expected.

Thus, the TD error given by these earlier models reproduces
the DA neurons’ activity remarkably well in the simple
conditioning experiments. These models however fail to
account for two recent experimental results in which the
intervals between the conditioning stimulus and the reward are
varied. We now describe these two experimental conditions on
temporal variability: (1) earlier reward delivery, and (2) uniform
variation of the stimulus–reward interval.

2. Experiments on temporal variability

2.1. Earlier reward delivery

In experiments conducted on dopamine measurements
(Hollerman & Schultz, 1998), a monkey is trained to expect

a reward precisely one second after the conditioned stimulus.
After training, the reward is suddenly presented 0.5 s early or
late. Three different types of DA responses were found (see
Fig. 1).

• if the reward is given when expected, no change in DA
activity is visible.

• if the reward is given late, a “dip” in DA activity occurs at
the time the reward was expected; then there is a burst of
activity shortly after the reward is finally given.

• if the reward is given early, a burst marks the reward
delivery; however, no significant dip is observed at the time
the reward was expected.
These observations follow the previous conclusions on

the experiment (Hollerman & Schultz, 1998). While we
will adhere to the authors’ claims, we would state a few
precautions concerning the use of this figure. Some of the
results are undisputable, such as the presence of a dopamine
burst shortly after early and delayed rewards. The dip of
activity in the case of a late reward is also described as
“significant” by the initial authors. Other results, however, are
suject to qualitative interpretation. For example, we could not
quantitatively detemine if one of the two bursts (early or late) is
higher than the other. More importantly, the authors state that no
dip of activity is observed following earlier reward. Although
we will adhere to this observation in the current paper, further
experiment might be needed to ascertain this result in a more
quantitative way.

The tapped delay line model (Montague et al., 1996)
reproduces accurately the first two types of responses, but fails
in the last: it predicts a pause in DA activity at the time when
the reward is usually expected. This happens because the agent
only reacts time-step by time-step, and thus cannot infer that the
reward it received earlier is the one it was expecting. In order to
explain this experimental data, a new model based on a semi-
Markov architecture has recently been proposed (Courville,
Daw, & Touretzky, 2004). In this model, only two states are
considered (ISI and ITI, inter stimulus and inter trial interval),
and the agent tries through learning to predict the duration and
probability of these two states. This model reproduces the above
data accurately, because once the reward has been given, the
agent does not expect any more rewards—thus, in the third
condition, no dip of activity is created at the time the reward
was given during training.

2.2. Uniformly varying stimulus–reward interval

In another experiment on DA measurement on monkeys
(Fiorillo & Schultz, 2001), the interval between the stimulus
and the reward varies uniformly over a fixed range (1–3 s)
throughout training. Fig. 2 shows the response of a DA neuron
during this experiment. When the SRI is short (lower part of
the figure), a strong burst of activity marks the time of reward;
for longer SRI (higher part of the figure), the observed burst of
activity is lower. For the longest intervals, it appears impossible
to state if there is actually a positive response.

Earlier TD models do not account for these results. In the
Montague model, for instance, the value function is reorganized
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