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Abstract

In the antisaccade paradigm subjects are instructed to perform eye movements in the opposite direction from the location of a visually appearing
stimulus while they are fixating on a central stimulus. A recent study investigated saccade reaction times (SRTs) and percentages of erroneous
prosaccades (towards the peripheral stimulus) of 2006 young men performing visually guided antisaccades. A unimodal distribution of SRTs
(ranging from 80 to 600 ms) as well as an overall 25% of erroneous prosaccade responses was reported in that large sample. In this article, we
present a neural model of saccade initiation based on competitive integration of planned and reactive saccade decision signals in the intermediate
layer of the superior colliculus. In the model the decision processes grow nonlinearly towards a preset criterion level and when they cross it, a
movement is initiated. The resultant model reproduced the unimodal distributions of SRT's for correct antisaccades and erroneous prosaccades as

well as the variability of SRTs and the percentage of erroneous prosaccade responses.
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1. Introduction

A paradigm often used to investigate decision processes
is the antisaccade paradigm (Hallett, 1978), a reaction time
task in which the subjects are instructed to perform eye
movements in the opposite direction from the location of a
stimulus that appears in their right or left peripheral visual
field while they are fixating on a central stimulus. Antisaccade
reaction times (aSRTs) are longer than would be expected by
considering synaptic delays and nerve conduction (Hanes &
Schall, 1996) and vary randomly from trial to trial (Everling
& Fischer, 1998). The distribution of aSRTs is unimodal
and the percentage of erroneous prosaccades towards the
peripheral stimulus has been observed to be 25% (Evdokimidis
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et al., 2002; Smyrnis, Evdokimidis, Stefanis, Constantinidis, &
Avramopoulos, 2002).

The slowness and variability of response time (RT) observed
in visuomotor tasks has been explained by decision processes
involving stochastic accumulation of information (Carpenter
& Williams, 1995; Hanes & Schall, 1996; Luce, 1986;
McClelland, 1979; Ratcliff, van Zandt, & McKoon, 1999;
Reddi & Carpenter, 2000; Usher & McClelland, 2001). In
the LATER model (Carpenter & Williams, 1995; Reddi &
Carpenter, 2000), a decision signal rises linearly from an
initial level in response to incoming information about a
stimulus, with its rate varying randomly from trial to trial,
until it reaches a fixed criterion or threshold level, at which
point a response is initiated (Reddi, Asrress, & Carpenter,
2003). Although the model accurately predicts the latencies
of saccades in various simple reaction experimental paradigms
(step and countermanding paradigms) as well as the shapes
of the distributions (Asrress & Carpenter, 2001; Carpenter &
Williams, 1995; Leach & Carpenter, 2001; Reddi et al., 2003;
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Reddi & Carpenter, 2000), it is unable to predict the error rate in
these paradigms. Moreover, the predicting power of the LATER
model fails when the model is applied to choice reaction
paradigms (e.g. antisaccade task) (see discussion section for
details).

The present modelling work addresses some of the
limitations of the previous models. It extends an already
established leaky competitive neural model of visually
guided eye movements in the presence/absence of distractors
(Trappenberg, Dorris, Munoz, & Klein, 2001) the inputs of
which are modelled as decision signals with linearly rising and
randomly varying from trial to trial rates as in the LATER
model (Carpenter & Williams, 1995; Reddi & Carpenter, 2000)
to explain the variability of response times and the percentage
of erroneous responses in the antisaccade task (Smyrnis
et al., 2002). The model explains how reactive (erroneous
prosaccades) and planned saccades (antisaccades) compete
against each other in the intermediate layers of the superior
colliculus (SC) and how a decision is formed and executed.
The neural circuitry that supports this process simulates
successfully responses of buildup neurons (Moschovakis &
Karabelas, 1985; Munoz & Wurtz, 1995a, 1995b) and burst
neurons of the intermediate layers of the SC (Moschovakis,
Karabelas, & Highstein, 1988; Munoz & Wurtz, 1995a, 1995b;
Waitzman, Ma, Oprican, & Wurtz, 1991) in the antisaccade task
(Everling, Dorris, & Munoz, 1998). Also, the model provides
a functional rationale of how buildup cells in these SC layers
process decision signals from converging unimodal pathways
and how these converging decision signals compete against
each other to yield an error and/or a correct eye movement in
the form of a phasic response from the burst neurons. Finally,
the model suggests why the response times in the antisaccade
task are so long and variable and predicts accurately the shapes
of correct and error RT distributions as well as their response
probabilities.

2. Materials and methods
2.1. General description

An earlier version of the neural model that will be presented
in this section was first reported in Cutsuridis, Evdokimidis,
Kahramanoglou, Perantonis, and Smyrnis (2003). In the
current and more comprehensive model, the preparation of an
antisaccadic eye movement consists of two independent and
spatially separated decision signals representing the reactive
and planned saccade plans. A movement is initiated when these
decision signals, represented by the neuronal activity of SC
buildup neurons with nonlinear growth rates varying randomly
from a normal distribution, gradually build up their activity
until reaching a preset criterion level. The crossing of the preset
criterion level (Durstewitz, 2003, 2004; Grammont & Richle,
1999; Matell, Mech, & Nicolelis, 2003; McEchron, Tsend, &
Disterhoft, 2003; Roux, Coulmance, & Riehle, 2003; Schultz,
Dayan, & Montague, 1997) in turn releases the “brake” from
the SC burst neurons and allows them to discharge resulting in
the initiation of an eye movement. One of the key assumptions

of the model is that in the superior colliculus, the two decision
processes are integrated at opposite colliculi locations and
they compete with each other via lateral excitation and remote
inhibition (Behan & Kime, 1996; Meredith & Ramoa, 1998;
Moschovakis et al., 1988; Munoz & Istvan, 1998; Olivier,
Dorris, & Munoz, 1999). The growth rate in one decision
process slows down when the other decision process is active
at the same time.

The neural model proposes that (1) the competition between
the SC buildup neurons encoding the decision signals and
the randomly varying nonlinear growth rates of the decision
processes are the underlying neural mechanisms needed to
explain why the aSRTs are so long, (2) the randomly varying
nonlinear growth rates of the decision processes generate
accurately the correct and error latencies as well as the shape
of the distributions seen in the antisaccade task (Evdokimidis
et al., 2002; Smyrnis et al., 2002), and (3) the interplay between
the criterion level and the randomly varying growth rates of the
decision processes can successfully simulate the error rates in
the antisaccade task.

2.2. Mathematical formalism

The neural model is a leaky competitive integrator (Amari,
1997; Arai, Keller & Edelman, 1994; Grossberg, 1973; Kopecz,
1995; Kopecz & Schoner, 1995; Taylor, 1999; Trappenberg
et al., 2001) of the intermediate layer of the superior colliculus.
The neural architecture of the model is described in Fig. 1. Self-
excitation and lateral inhibition is assumed between all neurons
in both superior colliculi (see Eq. (1)).

Neurons in the model are represented as simple nodes.
The central node represents a fixation neuron (black), whereas
the peripheral nodes alternatively represent buildup (grey) and
burst (white filled) neurons of the right and left superior
colliculus. For the sake of simplicity, all three types of neurons
lie in the same layer, although experimental (Munoz & Wurtz,
1993, 1995a, 1995b) and computational (Arai et al., 1994;
Grossberg, Roberts, Aguilar, & Bullock, 1997) studies have
shown that fixation and buildup neurons lie in the same layer
of the rostral and caudal pole of the SC respectively, whereas
burst neurons lie in a separate layer from the previous two.

Although some of the equations (Egs. (1)—(3)) presented in
this section have been developed before (Trappenberg et al.,
2001), new equations are also introduced (Egs. (4)—(6)). In
order to improve the readability of this section, we list in this
section all the equations (new and old) of the model.

The internal state x; (¢) of the node with index i is governed
by

dx; (7)
t—

o =0+ ij wij A (1) + L) + 1(t) = up + I

)

where 7 is a time constant, w;; is the synaptic efficacy from
node i to node j, A; is the activity function of node j, I, and
I, are the reactive and planned inputs that the SC receives from
other cortical areas, u, is a global inhibition term, and 7, is the
background noise. The value of u,, is set to zero for the buildup
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