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Partial distortion entropy maximization for online data clustering
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Abstract

Competitive learning neural networks are regarded as a powerful tool for online data clustering to represent a non-stationary probability
distribution with a fixed number of weight vectors. One difficulty in practical applications of competitive learning neural networks to online data
clustering is that most of them require heuristically-predetermined threshold parameters for balancing a trade-off between convergence accuracy,
i.e. error minimization performance, and speed of adaptation to the changes in source statistics. Although adaptation acceleration is achievable by
relocating a “useless” node so that it becomes useful, excessive relocation often disturbs error minimization. Hence, both of the adaptation speed
and the error minimization performance sensitively depend on threshold parameters to determine whether a node should be relocated or not. In
general, it is difficult to know adequate threshold parameters a priori. This paper proposes a novel criterion for decision making of node relocation
without heuristically predetermined thresholds. According to the proposed criterion, a node is relocated only if the relocation task improves partial
distortion entropy, which is an online optimality metric reliable from the viewpoint of error minimization. Hence, node relocation is carried out
without disturbing error minimization. As a result, both quick adaptation and error minimization are simultaneously accomplished without any
carefully predefined parameters. Experimental results clarify the validity of the proposed criterion. Competitive learning with the criterion is
clearly superior to other representative algorithms in terms of both quick adaptation and error minimization performance.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Unsupervised competitive learning has been developed
to estimate unknown probability distributions of input
vectors (Kohonen, 1989, 1995). In competitive learning, a
distribution of input vectors is represented with a fixed number
of weight vectors, each corresponds to a node of a competitive
learning neural network (CLNN). CLNNs are often regarded
as a powerful tool for data clustering that is to group a
huge number of vectors into some classes (clusters) (Fayyad,
Haussler, & Stolorz, 1996; Jain, Murty, & Flynn, 1999).

One advantageous feature of competitive learning for data
clustering is that it is innately applicable to online clustering
of time-series vectors drawn from a nonstationary probability
distribution. A CLNN can be seen as an online version of the
k-means data clustering algorithm (MacQueen, 1967). A
CLNN iterates learning steps to compensate weight vectors,
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so that the mean squared error for the current probability
distribution decreases. However, the basic competitive learning
algorithm needs a lot of learning steps to minimize the mean
squared error. Therefore, its computational cost also becomes
expensive as input vectors and/or weight vectors increase, and it
might fail in adaptation to drastic changes in the non-stationary
probability distribution.

To minimize the error with fewer learning steps, many
acceleration schemes for CLNNs have been proposed so far.
In general, such CLNNs are particularly devised to achieve
quick adaption to the changes in probability distributions.
For drastically updating a node, hence, many CLNNs employ
addition/duplication/splitting of a useful node based on their
own criteria (Chen, Sheu, & Fang, 1994; Fowler, 1998; Gersho
& Yano, 1991; Goldberg & Sun, 1988; Nakajima, Takizawa,
Kobayashi, & Nakamura, 1998; Nishida, Kurogi, & Saeki,
2001; Paul, 1982; Shen, Zeng, & Liou, 2003; Yoshizawa, Doki,
& Okuma, 1999). At the same time, a useless node is removed
to keep the number of nodes constant. This operation can be
regarded as relocating a useless node so that it becomes useful,
referred to as node relocation.
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An important research issue in node relocation is to define
how to determine whether a node should be relocated or not.
Despite the importance of node relocation, its performance
is often determined by heuristically-predetermined parameters.
Note that there is a trade-off between the error minimization
performance and adaptation speed; excessive node relocation
often disturbs error minimization against the current probability
distribution instead of accelerating it.

This paper proposes a novel criterion for decision making of
node relocation. The criterion does not require predetermined
parameters; the threshold for node relocation is dynamically
adjusted according to the optimality of weight vectors.
The optimality is assessed based on the partial distortion
theorem (Gersho, 1979; Gersho & Gray, 1992), which is
reliable to achieve minimization of the mean squared error.
Without any heuristically-predetermined thresholds, therefore,
node relocation based on the criterion can allow weight
vectors to quickly adapt to the changes in a nonstationary
distribution, while efficiently compensating a weight vector
so as to minimize the mean squared error. In addition, this
paper presents a simple competitive learning algorithm with the
proposed criterion.

The remainder of this paper is organized as follows.
Section 2 describes online clustering discussed in this paper.
In Section 2, a useful metric to dynamically estimate the
optimality of weight vectors, referred to as partial distortion
entropy, is also described, briefly reviewing the basic theory of
an optimal quantizer for a stationary signal source. Section 3
proposes a criterion for node relocation based on the optimality
metric. A competitive learning algorithm based on the criterion
is also presented. In Section 4, the validity of the proposed
criterion is verified through experiments. Section 5 presents
concluding remarks and our future work.

2. Online data clustering

2.1. Preliminary definitions

Let x(t) (x(t) ∈ Rk) be an input vector drawn from non-
stationary probability density function, Pt (x) at time t , and
Y(t) be a set of weight vectors, i.e. Y(t) = {y1, y2, . . . , yN }.
A CLNN maps any vector within Rk into one of a finite set of
nodes, each corresponds to its own weight vector:

Qt : Rk
→ Y(t). (1)

Hence every input vector x is mapped into the node of the
nearest weight vector, yw(t):

Qt (x(t)) = yw(t), (2)

where w is the index of the node corresponding to the nearest
weight vector, called a winner:

w = arg min
i

‖x(t) − yi (t)‖. (3)

The mean squared error is defined by

D(t) =

N∑
i=1

∫
Si

‖x(t) − yi (t)‖2
· Pt (x)dx, (4)

where N is the number of nodes and Si is the Voronoi region
of yi :

Si = {x|‖x − yi‖ ≤ ‖x − y j‖; j = 1, 2, . . . N , i 6= j}, (5)

and⋃
j

S j = Rk . (6)

Suppose that, as commonly assumed in many literatures
(e.g. Gersho and Gray (1992), Goldberg and Sun (1988)),
a nonstationary probability distribution of input vectors can
be approximated by a sequence of locally-stationary, ergodic
processes. Hence, the series of input vectors over time, X =

{x(t)}, is divided into disjoint and exhaustive frames (Gersho
& Gray, 1992), each of which is regarded as a finite/infinite
subset of input vectors that arise from an unknown stationary
probability distribution. Thus, the probability density function
of the distribution, Pt (x), is time-invariant within one frame and
changes only when transiting to the next frame.

Let Pτ (x) be the short-term stationary probability density
function within the τ -th frame Fτ , i.e. Pτ (x) = Pt (x|t ∈

Fτ ). Then the probability density function of a nonstationary
distribution can be expressed by a set of time-sharing stationary
probability density functions, {Pτ (x)|τ = 1, 2, . . .}, where
Fτ ∩ Fτ ′ = ∅ for τ 6= τ ′.

This paper addresses an online data clustering framework
that compensates a weight vector to minimize the error for the
current frame defined by

Dτ =

N∑
i=1

∫
Si

‖x − yi‖
2
· Pτ (x)dx. (7)

Under the assumption of a nonstationary probability distribu-
tion consisting of stationary frames, we can concentrate on error
minimization within a frame, and therefore adopt offline data
clustering techniques to online one. The allowable length of
a frame is constrained by the adaptation speed of online data
clustering. The more rapidly a data clustering algorithm can
adapt to changes, the shorter frame the algorithm can cluster.
Since the length of each frame is unknown in advance, quick
adaptation is mandatory for tracking a nonstationary probabil-
ity distribution. In addition to error minimization performance
and adaptation speed, the requirements for online data cluster-
ing are given as follows:

(1) Robustness to initial weight vectors: a set of weight vectors
with the minimum error for Fτ−1 may be a poor set of initial
weight vectors for error minimization for Fτ . Accordingly,
we must employ acceleration techniques whose features do
not depend on initial states of weight vectors.

(2) No time dependency: many nonadaptive competitive
learning algorithms employ time-dependent parameters,
which monotonically increase/decrease with time, in order
to achieve better error minimization performance by fine-
tuning weight vectors (e.g, Kohonen (1989), Kohonen
(1995), Nielsen (1990), Takizawa, Sano, Nakajima,
Kobayashi, and Nakamura (2003) Ueda and Nakano
(1994), Zhu and Po (1998)). However, CLNNs cannot use
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