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Abstract

An important component of language acquisition and cognitive learning is gaze imitation. Infants as young as one year of age can follow the

gaze of an adult to determine the object the adult is focusing on. The ability to follow gaze is a precursor to shared attention, wherein two or more

agents simultaneously focus their attention on a single object in the environment. Shared attention is a necessary skill for many complex, natural

forms of learning, including learning based on imitation. This paper presents a probabilistic model of gaze imitation and shared attention that is

inspired by Meltzoff and Moore’s AIM model for imitation in infants. Our model combines a probabilistic algorithm for estimating gaze vectors

with bottom-up saliency maps of visual scenes to produce maximum a posteriori (MAP) estimates of objects being looked at by an observed

instructor. We test our model using a robotic system involving a pan-tilt camera head and show that combining saliency maps with gaze estimates

leads to greater accuracy than using gaze alone. We additionally show that the system can learn instructor-specific probability distributions over

objects, leading to increasing gaze accuracy over successive interactions with the instructor. Our results provide further support for probabilistic

models of imitation and suggest new ways of implementing robotic systems that can interact with humans over an extended period of time.
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1. Introduction

Imitation is a powerful mechanism for transferring knowl-

edge from a skilled agent (the instructor) to an unskilled agent

(or observer) using manipulation of the shared environment. It

has been broadly researched, both in apes (Byrne & Russon,

1998; Visalberghy & Fragaszy, 1990) and children (Meltzoff &

Moore, 1977, 1997), and in an increasingly diverse selection of

machines (Fong, Nourbakhsh, & Dautenhahn, 2002; Lungar-

ella & Metta, 2003). The reason for the interest in imitation in

the robotics community is obvious: imitative robots offer rapid

learning compared to traditional robots requiring laborious

expert programming. Complex interactive systems that do not

require extensive configuration by the user necessitate a

general-purpose learning mechanism such as imitation.

Imitative robots also offer testbeds for computational theories

of social interaction, and provide modifiable agents for

contingent interaction with humans in psychological

experiments.

1.1. Imitation and shared attention

While determining a precise definition for ‘imitation’ is

difficult, we find a recent set of essential criteria due to Meltzoff

especially helpful (Meltzoff, 2005). An observer can be said to

imitate an instructor when:

(1) The observer produces behavior similar to the instructor.

(2) The observer’s action is caused by perception of the

instructor.

(3) Generating the response depends on an equivalence

between the observer’s self-generated actions and the

actions of the instructor.

Under this general set of criteria, several levels of imitative

fidelity and metrics for imitative success are possible.

Alissandrakis, Nehaniv, and Dautenhahn (2000, 2003) differ-

entiate several levels of granularity in imitation, varying in the

amount of fidelity the observer obeys in reproducing the

instructor’s actions. From greatest to least fidelity, the levels

include:

(1) Path granularity: the observer attempts to faithfully

reproduce the entire path of states visited by the instructor.

(2) Trajectory granularity: the observer identifies subgoals in

the instructor’s actions, and changes its trajectory over

time to achieve those subgoals.
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(3) Goal granularity: the observer selects actions to achieve

the same final goal state as the instructor (irrespective of

the actual trajectory taken by the instructor).

Many of the imitation tasks that span the above levels of

granularity require the instructor and observer to simul-

taneously attend to the same object or environmental state

before or during imitation. Such simultaneous attention is

referred to as shared attention in the psychological literature.

Shared attention has even been found to exist in infants as

young as 42 min old (Meltzoff & Moore, 1977). Yet, as with

other human imitative behaviors, shared attention is a

deceptively simple concept.

In seminal papers, Nehaniv and Dautenhahn (2000), and,

separately, Breazeal and Scassellati (2001) proposed several

complex questions that must be addressed by any robotic

imitation learning system. Other groups (Jansen & Belpaeme,

2005; Billard, Epars, Calinon, Cheng, & Schaal, 2004) have

applied a similar taxonomy to the design of imitative agents.

Among these questions are two that directly relate to shared

attention:

(1) How should a robot know what to imitate?

(2) How should a robot know when to imitate?

A system for shared attention must address exactly these

questions. An imitative system must determine what to imitate;

a system for shared attention must determine whether an

instructor is present, and if so, which components of the

instructor’s behavior are relevant to imitation. In the scope of

shared attention, this task encompasses both finding an

instructor and the ability to recognize if no instructor is present.

Once an instructor has been located, the observer can turn to

the question of where the instructor is directing his or her

attention. This step combines the questions of what and when.

The observer must first discern the instructor’s focus using cues

such as the instructor’s gaze, body gestures, verbalization, etc.

Determining what to imitate again comes into play as the

observer must determine, which of these cues are being used to

convey the instructor’s intent. Further, for a fully autonomous

system, the robot must be able to distinguish the intentionality

of tasks—a head-shake differs greatly from a head-movement

looking towards a specific object. The question of when to act

is then raised: the observer must determine when it has

acquired enough information to successfully imitate (cf. the

exploration–exploitation trade-off in reinforcement learning).

Action can be taken once the observer has determined where

to look, but the observer is now at an impasse: what really

matters is the instructor’s attentional focus. Consider, for

example, a person told to look to the right. This information is

not useful unless the person has knowledge about the current

task or some method to determine why they must look right.

Robotic observers learning from humans inevitably encounter

the same obstacle: the robot can look right, but is unlikely to

know the specific objects to which its attention is being

directed. Further, for the observer to direct its search towards

relevant objects or environment states, it must possess some

method to segment the scene and identify relevant subparts.

The observer must then be able to associate other factors with

the scene, such as audio cues or task-dependent context, and

identify the most salient segment. The pursuit of all-purpose

imitation depends on having a model for saliency, i.e. a model

of what components of the environmental state are important in

a given task. Low-level saliency models can be generic,

capturing image attributes such as contrast and color, but in this

paper, we focus on more useful higher-level, task- or

instructor-specific models, representing the observer’s learned

context-dependent knowledge of where to look.

Many different frameworks have been pursued for imple-

menting biologically inspired imitation in robots. Broadly,

frameworks can follow: (i) a developmental approach, where

the robot builds a model of social behaviors based on repeated

interactions with an instructor or caregiver (such as (Breazeal

& Velasquez, 1998; Breazeal, Buchsbaum, Gray, Gatenby, &

Blumberg, 2005; Calinon & Billard, 2005)); (ii) a biologically-

motivated model, such as neural networks (Billard & Mataric,

2000) or motor models (Johnson & Demiris, 2005; Demiris &

Khadhouri, 2005; Haruno, Wolpert, & Kawato, 2000); or (iii) a

combination of development and brain modeling (Nagai,

Hosoda, Morita, & Asada, 2003). Our model learns a model

of perceptual saliency based on interaction with an instructor,

bootstrapping the learned model using a neurally-inspired prior

model for saliency (Itti, Koch, & Niebur, 1998), thus

combining the developmental and modeling approaches.

As Nehaniv, Dautenhahn, Breazeal, and Scassellati note, the

complex questions of what and when to imitate are just now

being addressed by the robotics community. We do not claim

to fully answer these questions, but we wish to draw a link

between these questions with regard to imitation itself and the

sub-task of shared attention. Previous robotic systems, such as

those of Scassellati (1999), Demiris, Rougeaux, Hayes,

Berthouze, and Kuniyoshi (1997), are able to track the gaze

of a human instructor and mimic the motion of the instructor’s

head in either a vertical or horizontal direction. Richly

contingent human–robot interaction comparable to infant

imitation, however, has proven much more difficult to attain.

Price (Price, 2003), for example, addresses the problem of

learning a forward model of the environment (Jordan &

Rumelhart, 1992) via imitation (see Section 3), although the

correspondence with cognitive findings in humans is unclear.

Other frameworks have been previously proposed for imitation

learning in machines (Billard & Mataric, 2000; Breazeal, 1999;

Scassellati, 1999), although without the probabilistic formal-

ism being pursued in this paper. We view probabilistic

algorithms as critical in cases like gaze tracking, where the

instructor’s gaze target is subject to a high degree of perceptual

uncertainty. More recent imitation work has incorporated

probabilistic techniques such as principal components analysis,

independent components analysis, and hidden Markov models

(Calinon & Billard, 2005; Calinon, Guenter, & Billard, 2005,

2006). This work has concentrated on using humanoid robots to

imitate human motor trajectories, for example to write a

character using a marker. We view our system as being

complementary to these approaches: ideally, shared attention
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