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Abstract

This study presents experiments on the learning of object handling behaviors by a small humanoid robot using a dynamic neural network model,

the recurrent neural network with parametric bias (RNNPB). The first experiment showed that after the robot learned different types of ball

handling behaviors using human direct teaching, the robot was able to generate adequate ball handling motor sequences situated to the relative

position between the robot’s hands and the ball. The same scheme was applied to a block handling learning task where it was shown that the robot

can switch among learned different block handling sequences, situated to the ways of interaction by human supporters. Our analysis showed that

entrainment of the internal memory structures of the RNNPB through the interactions of the objects and the human supporters are the essential

mechanisms for those observed situated behaviors of the robot
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1. Introduction

Learning object handling behavior by robots is a difficult

problem since motor trajectories to achieve adequate handling

behaviors could be diverse regarding various situations. Even

when manipulating the same object, the motor time-develop-

ment would be quite different depending on how the robot and

the object are situated in the workspace. The current paper

shows that a dynamic neural network model is effective in

learning and generating such diverse and situational behaviors

for object handling.

There are a substantial number of prior studies concerning

the learning of object handling by robots. Recently, Bianco and

Nolfi (2004) showed that a simulated robot arm can acquire

object grasping behavior by evolving neural controllers. By

evolving simple sensory-motor maps in layered networks, quite

complex grasping behavior is generated dynamically even with

a significant range of perturbations in position and direction of

the object. However, it might be difficult to apply their

evolutionary approach to a real robot task because it requires a

substantial number of trials, which real robot situations cannot

easily accommodate.

In some studies of reinforcement learning, behavior

schemes are learned by combining predefined behavior

primitives. For instance, for an object handling task, a robot

learns to select among the predefined behavior primitives such

as approaching, grabbing, carrying and releasing an object for

each step appropriately. However, this approach can hardly be

applied to a dynamic object handling behavior such as object

grasping (Bianco & Nolfi, 2004) and juggling (Schaal, Sternad,

& Atkeson, 1996) because it is difficult to divide the dynamic

behavior scheme into a set of discrete behavior primitives

manually. On the other hand, some researchers (Tani & Nolfi,

1999; Wolpert & Kawato, 1998) proposed models that can

learn various behavioral skills from continuous sensory-motor

flow without possessing any predefined behavior primitives.

Recently, some of the authors proposed a neural network

scheme, termed RNN with Parametric Bias (RNNPB) (Ito &

Tani, 2004a; Tani, 2003) and applied it to the task of object

manipulation by an arm-type robot (Tani, 2003). However, the

task was quite simple since the object was manipulated only in

a 2D workspace and the interaction dynamics between the arm

and the object were quite limited.

In the current study, complex tasks of a ball and blocks

manipulations utilizing a humanoid robot are considered. In

order to let the robot acquire these task skills, an imitation
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learning framework is introduced to avoid an unrealistic

number of trial and error instances, which are often observed

when applying reinforcement learning and genetic algorithms

to complex behavior tasks. In our imitation learning method,

manipulation of objects is directly taught by human supporters

who guide the movements of the robot by grasping its arms.

After repeated guidance and corresponding neuronal learning,

the robot becomes able to generate the taught behavioral

patterns with generalization. Although it is true that the

introduction of direct teaching makes the task of imitation

learning much easier (Billard, 2002), it has been reported that

even chimpanzees cannot learn to imitate manipulatory actions

by watching but can do so by direct teaching by human

supporters (Myowa-Yamakoshi & Matsuzawa, 1999, 2000).

Imitation learning by watching may require human specific

cognitive functions to solve the corresponding problems

(Dautenhahn & Nehaniv, 2002; Nehaniv & Dautenhahn,

2001) with joint attention mechanisms (Baron-Cohen, 1996;

Moore & Corkum, 1994), which our current robots as well as

chimpanzees do not have.

The current study also investigates the issues surrounding

interactive and cooperative behavior generation involving

robots and human supporters. Interactive generation has been

addressed in the research of human–robot cooperation. In the

field of conventional engineering robotics, many have studied

cooperative tasking such as carrying an object (Yokoyama et

al., 2003) or dancing with a human (Kosuge, Hayashi, Hirata,

& Tobiyama, 2003). In those studies, robots are controlled to

keep desired states within the global task models, where the

human assistance is incorporated. When a human supporter

pushes or pulls an object, the robot can interactively behave by

keeping its state trajectories within the predesigned ones.

However, in this approach, the controller of the robot has to be

designed strictly as incorporated with the global task model.

On the other hand, Ogata, Masago, Sugano, and Tani (2003)

studied the cooperative robot–human navigation learning task

without having such explicit task models. In their task, both of

the human subjects and the robot learns to move to goal

locations through repeated trials where the task skills of the

robot are implicitly represented in the learned neural network.

One of the crucial problems in interactive generation is how to

coordinate the interactions between a robot’s movements and

the supporter’s intentions of guidance. In order to accept

guidance by human users, the robot’s behavior generation has

to be flexible enough to adapt to such external changes. On the

other hand, the behavior generation has to be sufficiently robust

in order to perform object handling behaviors stablely against

various perturbations. Therefore, interactive generation invol-

ving human supporters requires a good balance between

robustness and flexibility for adaptive behavior of the robot.

One specific goal of the current study is to show possible

neuronal mechanisms that enable the robot to generate

behavior adaptively corresponding to various situational

changes of the robot, the object, and the human supporter.

For this purpose, it is considered that reflex-type behavior

generations for acquiring a simple sensory-motor mapping may

not be sufficient since the recognition of situational changes in

our task may require contextual information processing. In

order to recognize current situations in a contextual manner,

certain internal models might be required. The internal model,

here, does not mean the global model of the task, but it refers to

the capability to anticipate encountering sensory flow in the

future by regressing sensory-motor flow of current and past

time in a contextual manner. Much neuroscience research has

identified that certain parts of prefrontal regions play an

essential role in recognizing context switching. The Wisconsin

card sorting task (WCST) (Milner, 1963) is one of the most

popular schemes to investigate such mechanisms for the

switching of cognitive sets. The subject is presented with cards

of specific shapes, colors, and numbers. Then the subject has to

sort the cards into different piles without having been explicitly

given the current criteria for correct sorting. The subjects are

then given feedback regarding the correctness of their current

sorting results, which leads them to the correct sorting. Various

neuro-imaging studies have indicated that the switching takes

places with error monitoring in the anterior cingulate cortex

(ACC) (Ito, Stuphorn, Brown, & Schall, 2003) and the resultant

executive controls in the posterior parts of the bilateral inferior

frontal sulcus (Nakahara, Hayashi, Konishi, & Miyashita,

2002). Although context switching in object manipulatory

behavior and in the WCST dealing with cognition of abstract

rules might be qualitatively different, they might share the

same basic information flow of error-monitoring with

anticipation and resultant executive control for switching.

In the current paper, our previously described scheme of the

RNNPB (Ito & Tani, 2004b; Tani, 2003) is utilized as one

possible neuronal network model to implement context

switching. The ultimate challenge of the study is to clarify

the essential mechanism of context switching for the task of

object handling from the dynamical systems perspectives

(Beer, 1995; Gelder, 1998). The dynamical structures that

appear in the tight coupling among the body, the object and the

internal neuronal processes will be explained by means of

attractor dynamics and their parameter bifurcation

characteristics.

2. Mechanism, model and algorithm

In order to achieve learning and the resultant interactive

generation of learned behavior, a dynamic neural network

model of RNNPB (Ito & Tani, 2004b; Tani, 2003) is utilized.

In the following section, the basic cognitive modes of the

RNNPB are introduced.

2.1. The basic mechanism

The following explains the basic idea for three different

cognitive operational modes for a robot, which include

learning, object handling, and object handling with human

supporters. First, in the learning phase, sensory-motor patterns

of guided behaviors are embedded in the RNNPB in the form of

attractor dynamics. The attractor represents the essential

spatio-temporal structure of the target behavior. Moreover,
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