
Big data for Natural Language Processing: A streaming approach

Rodrigo Agerri ⇑, Xabier Artola, Zuhaitz Beloki, German Rigau, Aitor Soroa
IXA NLP Group, University of the Basque Country (UPV/EHU), Donostia-San Sebastián, Spain

a r t i c l e i n f o

Article history:
Received 30 March 2014
Received in revised form 22 October 2014
Accepted 8 November 2014
Available online 20 November 2014

Keywords:
Natural Language Processing
Distributed NLP architectures
Big data
Storm
NLP tools

a b s t r a c t

Requirements in computational power have grown dramatically in recent years. This is also the case in
many language processing tasks, due to the overwhelming and ever increasing amount of textual infor-
mation that must be processed in a reasonable time frame. This scenario has led to a paradigm shift in the
computing architectures and large-scale data processing strategies used in the Natural Language Process-
ing field. In this paper we present a new distributed architecture and technology for scaling up text anal-
ysis running a complete chain of linguistic processors on several virtual machines. Furthermore, we also
describe a series of experiments carried out with the goal of analyzing the scaling capabilities of the lan-
guage processing pipeline used in this setting. We explore the use of Storm in a new approach for scalable
distributed language processing across multiple machines and evaluate its effectiveness and efficiency
when processing documents on a medium and large scale. The experiments have shown that there is a
big room for improvement regarding language processing performance when adopting parallel architec-
tures, and that we might expect even better results with the use of large clusters with many processing
nodes.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Professionals in any sector need to have access to accurate and
complete knowledge to be able to take well-informed decisions.
This is getting more and more difficult due to the sheer size of data
they need to process. This also means that the knowledge and
information of professionals is quickly getting out of date. How-
ever, their decisions have an even bigger impact in today’s
highly-interconnected world. Thus, professional decision-makers
are involved in a constant race to stay informed and to respond
adequately to any changes, developments and news. However,
the volume of news and documents provided by major information
brokers has reached a level where state-of-the-art tools are no
longer adequate to provide a solution.

Processing huge amounts of textual data has become a major
challenge in the Natural Language Processing (NLP) research area.
As the majority of digital information is present in the form of
unstructured data such as web pages or news articles, NLP tasks
such as cross-document coreference resolution, event detection
or calculating textual similarities often require processing millions
of documents in a timely manner. For example, the main goal of

the Newsreader project1 is to perform multilingual real-time event
detection and extract from text what happened to whom, when and
where, removing duplication, complementing information, register-
ing inconsistencies and keeping track of the original sources. The
project foresees an estimated flow of 2 million news items per day
and the complex linguistic analysis of those documents needs to
be done in a reasonable time frame (one or few hours). Therefore,
the project faces an important challenge with respect to the scalabil-
ity of the text processing.

This overwhelming flow of textual data calls for a paradigm
shift in the computing architecture and large scale data processing.
For instance, Singh et al. [27] process a corpus comprising news
articles published during the last 20 years. McCreadie et al. [20]
present a distributed framework for event detection that is capable
of effectively processing thousands of twitter posts every second.
These challenges fall into a new class of the so called ‘‘Big Data’’
tasks, requiring large scale and intensive processing which have
to be able to efficiently scale up to huge amounts of data
[23,27,20].

This paper presents a new distributed architecture and technol-
ogy for scaling up text analysis to keep pace with the rate of cur-
rent growth of news streams and collections. We designed and
deployed a complete chain of NLP modules within virtual
machines (VMs). We also present the twelve NLP modules included

http://dx.doi.org/10.1016/j.knosys.2014.11.007
0950-7051/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: rodrigo.agerri@ehu.es (R. Agerri), xabier.artola@ehu.es

(X. Artola), zuhaitz.beloki@ehu.es (Z. Beloki), german.rigau@ehu.es (G. Rigau),
a.soroa@ehu.es (A. Soroa). 1 http://www.newsreader-project.eu/.

Knowledge-Based Systems 79 (2015) 36–42

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2014.11.007&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2014.11.007
mailto: rodrigo.agerri@ehu.es
mailto: xabier.artola@ehu.es
mailto: zuhaitz.beloki@ehu.es
mailto: german.rigau@ehu.es
mailto: a.soroa@ehu.es
http://www.newsreader-project.eu/
http://dx.doi.org/10.1016/j.knosys.2014.11.007
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

into the virtual machines, of which a subset, the IXA pipes tools,
are the ones used to do most of the experimentation [1].2 We also
provide empirical performance results when applied to realistic vol-
umes of news within hard time constraints.

The rest of the paper is organized as follows. Section 2 presents
and discusses alternative big data frameworks. Section 3 presents
the text analysis modules of the English and Spanish pipelines. Sec-
tion 4 describes the distributed architecture and deployed solution
for massive processing of streams of texts. Section 5 describes the
experiments carried out to evaluate the performance of the pro-
posed solution. Finally, in Section 6 we discuss some concluding
remarks and planned future research work.

2. Big data frameworks

Processing massive quantities of data requires designing solu-
tions that are able to run distributed programs across a large clus-
ter of machines [30]. Besides, issues such as parallelization,
distribution of data, synchronization between nodes, load balanc-
ing and fault tolerance are of paramount importance. Apache
Hadoop3 is a framework designed to perform large scale computa-
tions that is able to scale to thousands of nodes in a fault-tolerant
manner. It is probably the most widely used framework for large
scale processing on clusters of commodity hardware. Hadoop imple-
ments MapReduce, a programming model for developing parallel and
distributed algorithms that process and generates large data sets.
Hadoop is the basis for a large number of other specific processing
solutions such as Mahout4 for machine learning or Giraph5 for graph
processing, to name but a few.

One of the main problems of using the Hadoop framework is
that it requires casting any computation as a MapReduce job. In
the case of the NLP pipeline presented in this work, these solutions
would require a complete reimplementation of each NLP module,
which is clearly impractical. Apache SPARK [31] overcomes this
problem by extending Hadoop with new workloads like streaming,
interactive queries and learning algorithms.

Hadoop follows a batch processing model, where computations
start and end within a given time frame. In a streaming computing
scenario [8], however, the processing is open-ended. Thus, the pro-
gram is designed to process documents forever while maintaining
high levels of data throughput and a low level of response latency.

Storm6 is an open source, general-purpose, distributed, scalable
and partially fault-tolerant platform for developing and running dis-
tributed programs that process continuous streams of data. Storm is
agnostic with respect to the programming model or language of the
underlying modules, and, thus, it is able to integrate third party tools
into the framework.

The main abstraction structure of Storm is the topology, a top
level abstraction which describes the processing node that each
message passes through. The topology is represented as a graph
where nodes are processing components, while edges represent
the messages sent between them. Topology nodes fall into two cat-
egories: the so called spout and bolt nodes. Spout nodes are the
entry points of a topology and the source of the initial messages
to be processed. Bolt nodes are the actual processing units, which
receive incoming text, process it, and pass it to the next stage in
the topology. There can be several instances of a node in the topol-
ogy, thus allowing actual parallel processing.

The data model of Storm is a tuple, namely, each bolt node in the
topology consumes and produces tuples. The tuple abstraction is

general enough to allow any data to be passed around the
topology.

In Storm, each node of the topology may reside on a different
physical machine; the Storm controller (called Nimbus) is the
responsible of distributing the tuples among the different
machines, and of guaranteeing that each message traverses all
the nodes in the topology. Furthermore, Nimbus performs auto-
matic re-balancing to compensate the processing load between
the nodes.

Section 4 describes our solution to big data processing using vir-
tualization, Apache Storm and a set of NLP tools organized in a
data-centric architecture. The description of such NLP tools is the
subject of the next section.

3. NLP pipeline

Many Natural Language Processing (NLP) applications demand
some basic linguistic processing (Tokenization, Part of Speech
(POS) tagging, Named Entity Recognition and Classification (NERC),
Syntactic Parsing, Coreference Resolution, etc.) to be able to further
undertake more complex tasks. Generally, NLP annotation is
required to be as accurate and efficient as possible and existing
tools, quite rightly, have mostly focused on performance. However,
this generally means that NLP suites and tools usually require
researchers to perform complex compilation/installation/configu-
ration procedures in order to use such tools. At the same time, in
the industry, there are currently many Small and Medium Enter-
prises (SMEs) offering services that one way or another depend
on NLP annotations.

In both cases, in research and industry, acquiring, deploying or
developing such base qualifying technologies is an expensive
undertaking that redirects their original central focus. In research,
much time is spent in the preliminaries of a particular research
experiment trying to obtain the required basic linguistic annota-
tion, whereas in an industrial environment SMEs see their already
limited resources taken away from offering products and services
that the market demands. In order to address this issue, we have
developed a set of NLP tools which we refer to as the IXA pipes
tools [1].7 The IXA pipes tools consist of ready to use modules to per-
form efficient and accurate linguistic annotation while allowing
users to focus on their original, central task.

3.1. IXA pipes

The aim of the IXA pipes tools is to provide multilingual NLP
tools that are simple and ready to use, portable, modular, efficient,
accurate and distributed under a free license. As in Unix-like oper-
ating systems, the IXA pipes consists of a set of processes chained
by their standard streams, in a way that the output of each process
feeds directly as input to the next one. The Unix pipeline metaphor
has been applied for NLP tools by adopting a very simple and well-
known data-centric architecture, in which every module/pipe is
interchangeable for another one as long as it reads and produces
the required data format. The IXA pipes are designed to minimize
or eliminate any installation/configuration/compilation effort and
are distributed under the Apache 2.0 license, which is free and
commercially friendly [1].

The data-centric architecture of the IXA pipes relies on a com-
mon interchange format in which both the input and output of
the modules needs to be formatted to represent and filter linguistic
annotations: the NLP Annotation Format (NAF8 [16]). NAF has
evolved from the KYOTO Annotation Framework (KAF [6]) and it is

2 http://ixa2.si.ehu.es/ixa-pipes.
3 http://hadoop.apache.org/.
4 https://mahout.apache.org/.
5 http://giraph.apache.org/.
6 http://storm.incubator.apache.org/.

7 http://ixa2.si.ehu.es/ixa-pipes.
8 http://wordpress.let.vupr.nl/naf/.

R. Agerri et al. / Knowledge-Based Systems 79 (2015) 36–42 37

http://ixa2.si.ehu.es/ixa-pipes
http://hadoop.apache.org/
https://mahout.apache.org/
http://giraph.apache.org/
http://storm.incubator.apache.org/
http://ixa2.si.ehu.es/ixa-pipes
http://wordpress.let.vupr.nl/naf/

Download	English	Version:

https://daneshyari.com/en/article/404874

Download	Persian	Version:

https://daneshyari.com/article/404874

Daneshyari.com

https://daneshyari.com/en/article/404874
https://daneshyari.com/article/404874
https://daneshyari.com/

