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a b s t r a c t

Dictionary learning, which is based on sparse coding, has been frequently applied to many tasks related
to remote sensing processes. Recently, many new non-analytic dictionary-learning algorithms have been
proposed. Some are based on online learning. In online learning, data can be sequentially incorporated
into the computation process. Therefore, these algorithms can train dictionaries using large-scale remote
sensing images. However, their accuracy is decreased for two reasons. On one hand, it is a strategy of
updating all atoms at once; on the other, the direction of optimization, such as the gradient, is not well
estimated because of the complexity of the data and the model. In this paper, we propose a method of
improved online dictionary learning based on Particle Swarm Optimization (PSO). In our iterations, we
reasonably selected special atoms within the dictionary and then introduced the PSO into the atom-
updating stage of the dictionary-learning model. Furthermore, to guide the direction of the optimization,
the prior reference data were introduced into the PSO model. As a result, the movement dimension of the
particles is reasonably limited and the accuracy and effectiveness of the dictionary are promoted, but
without heavy computational burdens. Experiments confirm that our proposed algorithm improves the
performance of the algorithm for large-scale remote sensing images, and our method also has a better
effect on noise suppression.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Recently, sparse representation has become a very popular
topic in the area of remote sensing image processing. In many tasks
related to remote sensing images, such as image segmentation,
fusion, classification, reconstruction, and change detection, sparse
representation is frequently employed to improve the performance
of the algorithms. Modeling data as sparse combinations of atoms,
which are the elements of a dictionary, can manifest the important
intrinsic characteristics of remote sensing images.

There is a long research history on how to sparsely represent a
signal or data by a set of bases. We also call this set of bases a dic-
tionary. There are two different classes of dictionary: analytic and
non-analytic. Many of the earlier studies on sparse representation
focused on analytic dictionaries. Different bases, such as Fourier

transformations, wavelets [1], curvelet [2], bandelet [3], direction-
let [4], and grouplet [5], were proposed in different periods. The
development of analytic dictionaries went through several stages,
such as multi-resolution, localization, anisotropy, and adaptation.
Another large class of dictionary is non-analytical. Unlike decom-
positions based on a predefined analytic base (such as a wavelet)
and its variants, we can also learn a hyper complete dictionary
without analytic form, which has neither fixed forms of atoms
nor requires base vectors to be orthogonal. The basic assumption
behind the learning approach is that the structure of complex inco-
herent characters can be more accurately extracted directly from
the data than by using a mathematical description.

A non-analytic dictionary learning problem apparently can be
modeled as a constraint-optimization problem. The optimization
of both the dictionary and coefficients is non-convex, but alterna-
tive optimization is convex. Therefore, many algorithms consist of
two stages: atom updating and sparse coding. The main differences
between most methods, such as the method of optimal directions
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(MOD) [6], generalized PCA (GPCA) [7], and K-SVD [8], are their
atom-updating stages. Obviously, we hope that dictionary learning
is as efficient as possible. The direct optimization method (DOM)
[9] denoted the algorithm as a one-step block-coordinate proximal
gradient descent. It is more efficient than alternating optimization
algorithms. On the other hand, the effectiveness of sparse repre-
sentation is also important. The Fenchel duality method [10]
solved this problem in a dual space and promoted the effectiveness
of the dictionary. Another idea is to use a first-order series expan-
sion instead of the dictionary-coefficient matrix product [11].
Doing so improves performance while adding only a small addi-
tional computational load. Apart from constraint optimization,
we can also model the dictionary problem as a stochastic process.
Non-parametric Bayesian dictionary learning (NBDL) [12] employs
a truncated beta-Bernoulli process to infer an appropriate dictio-
nary, and obtains significant improvements in image recovery
[12]. Furthermore, multi-scale dictionary learning can also be pre-
sented as a fully Bayesian model [13].

Non-analytic dictionary learning is very efficient in data repre-
sentation; however, it also introduces many new problems. First,
the relationship between the over-complete atoms attracts much
research attention. The atoms in the dictionary could be incoherent
[14], multi-model [15,16], multi-dictionary [17,18], multi-scale
[19,20], or hierarchical [21,22]. Second, the dictionary problem is
also a supervised versus unsupervised issue. In the early research,
most of the dictionary learning methods were unsupervised.
Recently, with its wide applications to many different areas, using
discriminative information [23–26] in the dictionary learning pro-
cess has become popular. Supervised dictionary learning [27]
makes the atoms more sophisticated and more flexible. Further-
more, the conception of task-driven dictionary learning was pro-
posed [28].

For large groups of data, it is very hard to take all the data into
the computation model at once. Therefore, in addition to the batch-
based methods mentioned above, a group of online learning meth-
ods, such as recursive least squares dictionary learning (RLS) [29],
online dictionary learning (ODL) [30], and the non-parametric
Bayesian method (NBDL) [12], were developed in recent years.
However, these online learning tools also led to some new prob-
lems and concerns, such as how to introduce the data into the
training process in a smooth and orderly manner, how to perform
dimension reduction [31], and how to optimize the structure of the
dictionarys atoms. More importantly, experiments show that the
accuracy of sparse representation of the dictionary produced by
online learning is decreased because of the complexity of the large
data sets of remote sensing images. The reason for this is that the
strategy of updating atoms in ODL, RLS, or NBDL is unreasonable
when handling large data. When taking both dictionaries, D, and
coefficients, a, as variables, it is difficult to optimize them at the
same time because of the non-convex character of the object func-
tion. Alternative optimization of atoms and coefficients decreases
the accuracy of dictionary learning, especially when the data set
is very large. It is easy to stop at a local extreme value under the
influence of the continuous computation manner, noise, and com-
plexity of the data. However, for large remote sensing data sets,
there are often many other priors than the sparsity that we can uti-
lize in the dictionary-learning process.

First, for a certain area, the remote sensing images for a terres-
trial object at different times always show some similarities because
the changing of land covers is usually slow. Second, for the same
scene, the remote sensing images from different sensors often share
similar textures to some extent. Therefore, when the location is
given, we can usually use the history or multi-source data to guide
the direction of the optimization in the atom-updating stage of dic-
tionary learning. For example, in the atom-updating stage of the

ODL method, the gradient direction can be easily guided by refer-
ence data or an existing reference dictionary.

In this paper, to effectively and sparsely represent the large
remote sensing image set, we use reference data as priors and
introduce PSO [32] into the atom-updating stage of the ODL algo-
rithm. In the iteration, special atoms in the current dictionary are
selected as the particles in the PSO model. In order to reduce the
dimensions of the particles, every selected atom is represented
by the linear combination of a reference image and the remaining
atoms. To make the optimization more efficient, in PSO, the flying
directions are limited to the few dimensions that are estimated by
considering the relationship between the different subspaces of the
atoms. Furthermore, for the redundant and cluster characters of
the textures of the large remote sensing data set, the features of
the reference data constrain and guide the ranges and directions
of random particle movement in PSO. As a result, the flying of
the particles in PSO is semi-random. This proposed semi-random
PSO promotes the accuracy of the atom updating, and does not
result in heavy computational burdens because of the guidance
of the reference data. In the following sections, we first summarize
the ODL algorithm and then propose our method based on the new
atom-updating scheme.

2. Online dictionary learning based on gradient descent

The non-analytic sparse representation uses a hyper-complete
dictionary matrix D 2 Rm�n, which includes n atoms for columns
to represent a signal x 2 Rm as a sparse linear combination of these
atoms. The representation of sample data x can be written as the
approximate x � Da, which satisfies jjx� Dajjp 6 e. Here, the typi-
cal norm for sparse representation is lp�norms, and usually is true
in the case of p ¼ 2. Dictionary learning is an optimization problem
written as:

arg min
D;a

1
2

X � Dak k2
2 þ kjjajj1: ð1Þ

For convenience, X 2 Rm�qðm� qÞ is the training data set and
xi 2 Rm is the ith column of training data matrix X. The dictionary
is denoted by D ¼ fd1; � � � ; dj; � � � ; and dng, and dj stands for the jth
column of D. k is a regularization parameter. a is the coefficient of
sparse representation. The Frobenius norm of a matrix X in Rm�p

here can be denoted by jjXjjF , ð
Pm

i¼1

Pq
j¼1X½i; j�2Þ

1=2
. The object

function to be minimized in Eq. (1) is not jointly convex in a and
D, but it becomes convex in one variable, keeping the other fixed.
Thus, the ODL algorithm can be divided into two steps that alter-
nately solve the optimization problem in an iterative loop. One is
keeping D fixed and finding a, which is called the sparse coding
stage. The other is keeping a fixed and finding D, which is called
the atom-updating stage.

In the first stage, the ODL uses LARS [33] or orthogonal match-
ing pursuit (OMP) [34] to find a:

at ¼ arg min
a

1
2
jjxt � Dt�1ajj22 þ kjjajj1; ð2Þ

where the subscript t means the tth iteration of the ODL procedure.
In the second step, the original objective function is:

D ¼ arg min
D2C

1
t

Xt

i¼1

1
2
jjxi � Daijj22 þ kjjaijj1: ð3Þ

As we know, the optimization variable in the object function is
the dictionary D; in the meantime, we use the matrix form of X
instead of the vector a. The Eq. (3) can thus be rewritten as:

Dt ¼ arg min
D2C

1
2
jjX � Dajj2F : ð4Þ
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