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a b s t r a c t

The class imbalance problem has attracted a lot of attention from the data mining community recently,
becoming a current trend in machine learning research. The Consolidated Tree Construction (CTC) algo-
rithm was proposed as an algorithm to solve a classification problem involving a high degree of class
imbalance without losing the explaining capacity, a desirable characteristic of single decision trees and
rule sets. CTC works by resampling the training sample and building a tree from each subsample, in a
similar manner to ensemble classifiers, but applying the ensemble process during the tree construction
phase, resulting in a unique final tree. In the ECML/PKDD 2013 conference the term ‘‘Inner Ensembles’’
was coined to refer to such methodologies. In this paper we propose a resampling strategy for classifica-
tion algorithms that use multiple subsamples. This strategy is based on the class distribution of the train-
ing sample to ensure a minimum representation of all classes when resampling. This strategy has been
applied to CTC over different classification contexts. A robust classification algorithm should not just
be able to rank in the top positions for certain classification problems but should be able to excel when
faced with a broad range of problems. In this paper we establish the robustness of the CTC algorithm
against a wide set of classification algorithms with explaining capacity.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

In data mining, a classification problem occurs when an object
needs to be assigned to a predefined group or class based on a
number of observed attributes related to that object [1].

Class imbalance has been considered one of the main problems
in data mining in recent years [2–6]. The class imbalance problem
occurs when at least one of the classes (minority class/es) is under-
represented in the original training sample compared to the
remaining classes. The imbalance can be either intrinsic (directly
related to the nature of the data, such as the diagnosis of rare dis-
eases) or extrinsic. Extrinsic imbalance can be caused by limita-
tions in the data collection process [7]. Class imbalance is
present in several real problems, such as medical diagnosis [8],
insurance fraud detection [9], customer churn prevention [10],
traffic incident detection [11] and DNA sequencing [12].

Class imbalance has a detrimental effect on classification algo-
rithms that maximize overall accuracy [3]. In the presence of class
imbalance, such algorithms might build a trivial classifier that clas-

sifies all examples as majority class, obtaining a high overall accu-
racy but misclassifying all minority class examples (which is
usually the class of interest). This is the case with the well known
C4.5 decision tree algorithm [13] and its pruning mechanism. This
mechanism iteratively deletes leaf nodes by looking for the dele-
tion that maximizes accuracy gain until no deletion increases accu-
racy. In the presence of class imbalance, the deleted branches are
usually responsible for correctly classifying the minority class
examples [14]. Class imbalance can also amplify the effects of other
classification problems such as concept complexity [15], high
dimensionality combined with small sample size [3] or small dis-
juncts [16].

The CTC (Consolidated Tree Construction) algorithm [17] was
proposed for an insurance fraud detection problem where class
imbalance was present [9]. CTC creates a set of subsamples from
a training sample and builds a decision tree from each subsample
in a similar manner to Bagging [18] but applying the ensemble pro-
cess when building the tree by voting on the split on each of the
tree’s nodes. Abbasian et al. [19] recently coined the term ‘‘Inner
Ensembles’’ for similar procedures and suggested extending it to
other algorithms, such as Bayesian networks and K-means. Unlike
ensemble algorithms, the final model of the CTC algorithm is a sim-
ple decision tree understandable by humans. The mining of under-
standable patterns is a current trend in data mining, as highlighted
in a recent special issue of a high-ranking journal in the field of
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artificial intelligence [6]. Consolidated trees are more stable and
less complex than the C4.5 trees they are based on. Consolidated
trees change far less when induced from different training samples
and are thus more stable [20]. The complexity of the trees, repre-
sented as the amount of internal nodes, is smaller in consolidated
trees. These features are important because, as Turney [21] and
Domingos [22] pointed out separately ‘‘engineers are disturbed
when different batches of data from the same process result in rad-
ically different decision trees. The engineers lose confidence in the
decision trees, even when we can demonstrate that the trees have
high predictive accuracy.’’ and ‘‘a single decision tree can easily be
understood by a human as long as it is not too large’’.

In the work presented in this paper a novel resampling method-
ology is proposed and applied to the CTC algorithm. This method-
ology uses the notion of coverage, the minimum percentage of
instances from any class of the training sample present in the sub-
sample set with a different class distribution, to determine the
amount of subsamples needed. Thus, instead of setting a fixed
amount, the number of subsamples is determined by the data set’s
class distribution, the subsample type and the chosen coverage
value. The greater the class imbalance present in the training set,
the more subsamples are necessary to achieve the same coverage.
The results achieved by CTC using this new resampling strategy are
compared to those published by Fernández et al. [23]. They pro-
posed a taxonomy of sixteen rule-based evolutionary algorithms,
dividing them into 3 main categories and 5 families. The discrimi-
nating ability of the algorithms was tested in three different con-
texts: a set of 30 standard (mostly multi-class) data sets, 33 two-
class imbalanced data sets and the same two-class data sets pre-
processed with SMOTE to balance the class distribution. All the
data sets were taken from the KEEL repository.2 For each of the
three contexts an intra-family comparison was performed and the
best ranking algorithms of each family of the taxonomy were com-
pared, along with a fixed set of six classical non-evolutionary classi-
fication algorithms. All twenty-two algorithms used in their work
(whether rule-based or not) are explanatory, which makes them nat-
ural rivals to CTC. This makes that experiment an ideal environment
to test CTC with the coverage-based resampling strategy.

The main contribution of this paper is the use of the notion of
coverage. Depending on the difficulty of the problem (defined by
the class distribution in the data set) and the characteristics of
the subsamples to be created, the coverage determines the ade-
quate number of samples to build consolidated trees. In previous
works, CTC has never been used with data sets with such high
degree of class imbalance and such small size. Coverage-based
resampling ensures that the number of samples does not fall short
of representing all classes to a minimum degree, independently of
the class distribution. Furthermore, we have generalized this strat-
egy in the context of multi-class data sets, where class imbalance is
also present but usually not studied. In the analysis performed in
this work in three classification contexts, a coverage value of 99%
has been determined to be the most adequate for the CTC algo-
rithm. Also, although applying SMOTE had previously never
improved CTC’s performance in a significant manner, the combina-
tion of coverage-based resampling with the use of SMOTE has been
able to do so.

In this work we want to establish CTC’s robustness by showing
that it ranks in the top positions for different classification contexts
compared against a wide range of algorithms, all with explaining
capability. The significance of CTC’s performance compared to its
competitors is backed up by performing rigorous statistical testing
following the guidelines established in the field of machine learn-
ing research [24–26].

The rest of the paper is organized as follows. Section 2 gives an
overview of the related work in the fields of class imbalance, tree
and rule induction algorithms and the CTC algorithm. Section 3
presents the coverage-based resampling and states the hypothesis
of this work. Sections 4 and 5 respectively describe the experimen-
tal setup and the analysis of results. Finally, Section 6 gives this
work’s conclusions and details future work.

2. Related work

This section reviews the latest developments in decision tree
and rule induction methods and techniques to solve the class
imbalance problem. The last subsection reviews the research on
the CTC algorithm that has led to the experiments presented in this
paper.

2.1. Tree and rule induction methods

In machine learning, sometimes the reason why a classifier
makes a decision is as important as the accuracy of the decision
itself. This is especially true for domains where the classifier works
as a decision support system for humans, such as medical diagno-
sis and fraud detection. Some classification algorithms have a
white box nature, where the decision of the classifier can easily
be interpreted by a human. Decision trees and rule sets are classi-
fiers of this type.

A classification tree, also known as a decision tree, is a set of
conditions organized in a hierarchical structure. Instances are clas-
sified by navigating them from the root node down to a leaf,
according to the outcome of the tests along the path [27].

Some of the earliest decision tree algorithms were CHAID [28]
and CART [29]. Later Quinlan’s ID3 [30] and its successor C4.5
[13] were published. Decades later, C4.5 is still considered one of
the top algorithms in machine learning [31]. These algorithms dif-
fer from each other in a number of ways, such as: the type of attri-
butes they can handle, their split criteria when making decisions,
the type of split made and the presence of a pruning mechanism.
Oblique decision trees [32] build decision trees where each split
is made based on more than one variable.

Rule induction algorithms formulate rules that aim to describe
the concept of interest as a set of conditions for the attributes that
describe the examples. Some rule induction methods such as C4.5-
Rules [13] and PART [33] derive rules from decision trees. In other
rule induction algorithms rule sets are formed from scratch by
sequentially building rules using a separate-and-conquer strategy:
Each rule covers a portion of the training sample, the examples
covered by that rule are removed from the training sample and
the next rule is built [34]. A rule set is able to separate examples
belonging to the class of interest from the rest. Algorithms such
as IREP [35] build rules from scratch. Cohen [36] proposed Ripper,
which shows an improvement over IREP’s discriminating capacity
without sacrificing much computational efficiency.

Rule-induction algorithms can use several techniques to build
rules. One of these techniques is evolutionary algorithms. Rule-
based techniques that make use of evolutionary algorithms are
genetics-based machine learning (GBML) algorithms. In the past,
GBML systems were classified into the Michigan and Pittsburgh
categories. However not all evolutionary rule-based algorithms fall
into those categories and recently a new taxonomy was proposed
based on the representation of the chromosome of the associated
evolutionary algorithm [23]. This taxonomy defines five categories,
divided into three families. The first family encompasses those
algorithms where the chromosome is a rule and has three subcat-
egories that differ in their approach: the classic Michigan
approach, the iterative rule learning approach and the genetic2 http://sci2s.ugr.es/keel/datasets.php.
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