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The cerebellum as a liquid state machine
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Abstract

We examined closely the cerebellar circuit model that we have proposed previously. The model granular layer generates a finite but very long
sequence of active neuron populations without recurrence, which is able to represent the passage of time. For all the possible binary patterns fed
into mossy fibres, the circuit generates the same number of different sequences of active neuron populations. Model Purkinje cells that receive
parallel fiber inputs from neurons in the granular layer learn to stop eliciting spikes at the timing instructed by the arrival of signals from the inferior
olive. These functional roles of the granular layer and Purkinje cells are regarded as a liquid state generator and readout neurons, respectively.
Thus, the cerebellum that has been considered to date as a biological counterpart of a perceptron is reinterpreted to be a liquid state machine that
possesses powerful information processing capability more than a perceptron.
c© 2007 Published by Elsevier Ltd
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1. Introduction

In the Marr–Albus–Ito theory of cerebellar computation
(Albus, 1971; Ito, 1984; Marr, 1969), the cerebellum is consid-
ered as a biological counterpart of a simple perceptron, which
is a two-layer neural network with learning capability (Rosen-
blatt, 1958). Specifically, granule cells and Purkinje cells in
the cerebellar cortex constitute the input and output layers,
respectively, and connections between them by granule cell ax-
ons called parallel fibres are modifiable by an instruction sig-
nal coming from the inferior olive to Purkinje cells through
climbing fibres, which is well known as long-term depression
(LTD) (Ito, 1989, 2002b). While a simple perceptron is able
to compute a function that describes only linear separation of
input signals (Haykin, 1999), the cerebellum plays an essen-
tial role in motor control for coordinating movements of differ-
ent body parts into a harmoniously integrated body movement,
in which an enormous number of muscles must be activated
precisely in a correct order and timing. Moreover, recent stud-
ies have suggested that the cerebellum is involved in higher
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cognitive functions including time perception and language
processing (Ito (2002a) for review). How does the cerebellum
as a simple perceptron perform such a complex task?

The granule cell layer comprises granule cells in a recurrent
inhibitory network with Golgi cells (Ito, 1984), the major
granule cell layer interneuron, suggesting that the input layer of
the cerebellum represents a recurrent circuit. According to this
observation, several groups have proposed cerebellar models
in which the input layer is a recurrent network (Buonomano
& Mauk, 1994; Hofstötter, Mitz, & Verschure, 2002; Medina,
Garcia, Nores, Taylor, & Mauk, 2000; Yamazaki & Tanaka,
2005a). Yet, the computational power of the entire network
has not been clarified. We have studied the dynamics of the
recurrent circuit theoretically with a simplified rate-coding
model (Yamazaki & Tanaka, 2005a) and a realistic model
composed of spiking neuron units (Yamazaki & Tanaka,
2005b). These studies have shown that model granule cells
exhibit a random repetition of transitions between active
and inactive states. The sparse population of active cells
changes with time, and there is no recurrence of active cell
populations. Therefore, one population in a sequence of active
cell populations is able to represent exclusively a specific time
interval. Namely, the model cerebellum represents the passage
of time in a sparse-population coding scheme. We have also
demonstrated (1) resetability of activity pattern generation,
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(2) robust generation of an activity pattern against noise,
(3) representation of different time passages associated with
different input signals.

In the present study, we examined in more detail the
information representation capability of the recurrent circuit in
the model granular layer and the ability of model Purkinje cells
to read out information. We considered to learn and represent
a Boolean function, which has K bit inputs and M bit outputs.
Model neurons in the recurrent circuit were able to distinguish
all combinations of 2K binary input signal patterns by a sparse-
population coding, suggesting spatial discrimination capability
of the network. Furthermore, the neurons could distinguish
elapsed time from the onset of an input signal, indicating
temporal discrimination capability as well. Taken together,
the recurrent circuit was a spatiotemporal discriminator of
input signals. On the other hand, we verified that our model
cerebellar circuit is able to learn and represent any given
Boolean function.

The spatiotemporal activity patterns of neurons generated
by the recurrent circuit in the model granular layer have no
fixed point attractors, because the same pattern does not appear
more than once. On the other hand, model Purkinje cells,
which receive the activity patterns and instruction signals,
learn to generate desired output signals. In terms of the liquid
state machine (Maass, Natschläger, & Markram, 2002), the
granular layer in the cerebellum corresponds to a liquid state
generator, and Purkinje cells work as readout neurons. Such
functional resemblance of the cerebellum to a liquid state
machine explains the huge computational power of the previous
cerebellar models having a recurrent network as an input
layer (Buonomano & Mauk, 1994; Hofstötter et al., 2002;
Medina et al., 2000; Yamazaki & Tanaka, 2005a). Moreover,
our liquid state machine hypothesis will supersede the classical
perceptron hypothesis of the cerebellum.

2. Model description

Fig. 1 shows a schematic diagram of cell types and synaptic
connections in the cerebellum (Eccles, Ito, & Szentágothai,
1967; Ito, 1984). The entire network computes a function f :(
BK ,N

)
→ BM , where B and N denote the Boolean and

natural integers, respectively. That is,

o = f (x, t), (1)

where x and o denote (x1, x2, . . . , xK ) and (o1(t), o2(t), . . . ,
oM (t)), respectively, and t represents the discrete elapsed time
from the onset of an input signal.

The model granular layer transforms static K inputs
(x1, x2, . . . , xK ) into N spatiotemporal activity patterns
(z1(t), z2(t), . . . , zN (t)) as shown below. Model Purkinje cells
receive the spatiotemporal activity patterns and generate M
outputs (r1(t), r2(t), . . . , rM (t)). For any i and t , ri (t) is given
by

ri (t) =

∑
j

Ji j z j (t), (2)

where Ji j is the synaptic weight of the connection from neuron
j in the granular layer to Purkinje cell i . The final output of the

Fig. 1. Schematic diagram of cell types and synaptic connections in
cerebellum.

network (ô1(t), ô2(t), . . . , ôM (t)) is calculated as

ôi (t) = Θ [1 − ri (t) − θ ] , for i = 1, . . . , M, (3)

where 1 in the argument of Θ represents the normalized
amplitude of excitatory input signals through mossy fibres,
Θ[x] = 1 for x ≥ 0 and 0 otherwise, and θ is a threshold
constant. The weights of Ji j of parallel fibre inputs to Purkinje
cells, are modified via a climbing fibre dependent LTD rule (Ito,
1989). That is, the conjunctive stimulation of parallel fibres
(i.e. z j (t) > 0) and the climbing fibre (i.e. ei (t) = 1) depresses
synapses of the parallel fiber terminals on the Purkinje cell
dendrites. The instruction signal pattern is set at a desired
output pattern as

ei (t) = oi (t), for i = 1, . . . , M. (4)

Accordingly, Ji j is set as follows:

Ji j =

{
0 z j (t) > 0 and ei (t) = 1,

1 otherwise. (5)

Next, the model granular layer consists of N neurons (model
granule cells). Let zi (t) be the activity of neuron i at time t ,
which is given by

zi (t) = [ui (t)]+ , (6)

Here [x]
+

= x for x > 0 and 0 otherwise. ui (t) is the internal
state of neuron i at time t . ui (t) is defined by

ui (t) = Ii −

∑
j

wi j

t∑
s=1

exp (−(t − s)/τ) z j (s − 1), (7)

where Ii and wi j denote the afferent input signal to neuron
i through mossy fibres and the synaptic weight of recurrent
inhibition from neuron j to neuron i . The summation with
respect to s in the second term on the right-hand side represents
the temporal integration of activities over a long time. This
indicates that the activity of neuron j is integrated through
time by the convolution with an exponential decay factor, and τ

determines the integration range. Derivation of Eq. (7) is found
in our previous paper (Yamazaki & Tanaka, 2005a).

We determine the value of wi j randomly, indicating that the
model granular layer is a random recurrent inhibitory network.
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