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Abstract

We analyze in this article the significance of the edge of chaos for real-time computations in neural microcircuit models consisting of
spiking neurons and dynamic synapses. We find that the edge of chaos predicts quite well those values of circuit parameters that yield maximal
computational performance. But obviously it makes no prediction of their computational performance for other parameter values. Therefore,
we propose a new method for predicting the computational performance of neural microcircuit models. The new measure estimates directly the
kernel property and the generalization capability of a neural microcircuit. We validate the proposed measure by comparing its prediction with direct
evaluations of the computational performance of various neural microcircuit models. The proposed method also allows us to quantify differences
in the computational performance and generalization capability of neural circuits in different dynamic regimes (UP- and DOWN-states) that have
been demonstrated through intracellular recordings in vivo.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

What makes a neural microcircuit computationally power-
ful? Or more precisely, which measurable quantities could ex-
plain why one microcircuit C is better suited for a particular
family of computational tasks than another microcircuit C ′?
Rather than constructing particular microcircuit models that
carry out particular computations, we pursue in this article a
different strategy, which is based on the assumption that the
computational function of cortical microcircuits is not fully ge-
netically encoded, but rather emerges through various forms of
plasticity (“learning”) in response to the actual distribution of
signals that the neural microcircuit receives from its environ-
ment. From this perspective the question about the computa-
tional function of cortical microcircuits C turns into the ques-
tions:

(a) What functions (i.e. maps from circuit inputs to circuit
outputs) can particular neurons (“readout neurons”, see
below) in conjunction with the circuit C learn to compute.
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(b) How well can readout neurons in conjunction with the
circuit C generalize a specific learned computational
function to new inputs?

We propose in this article a conceptual framework and
quantitative measures for the investigation of these two
questions. In order to make this approach feasible, in spite
of numerous unknowns regarding synaptic plasticity and the
distribution of electrical and biochemical signals impinging on
a cortical microcircuit, we make in the present first step of this
approach the following simplifying assumptions:

1. Particular neurons (“readout neurons”) learn via synaptic
plasticity to extract specific information encoded in the
spiking activity of neurons in the circuit.

2. We assume that the cortical microcircuit itself is highly re-
current, but that the impact of feedback that a readout neuron
might send back into this circuit can be neglected.1

1 This assumption is best justified if such readout neuron is located for
example in another brain area that receives massive input from many neurons in
this microcircuit and only has diffuse backwards projection. But it is certainly
problematic and should be addressed in future elaborations of the present
approach.
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3. We assume that synaptic plasticity of readout neurons en-
ables them to learn arbitrary linear transformations. More
precisely, we assume that the input to such readout neuron
can be approximated by a term

∑n−1
i=1 wi xi (t), where n − 1

is the number of presynaptic neurons, xi (t) results from the
output spike train of the i th presynaptic neuron by filtering it
according to the low-pass filtering property of the membrane
of the readout neuron,2 and wi is the efficacy of the synaptic
connection. Thus wi xi (t) models the time course of the con-
tribution of previous spikes from the i th presynaptic neuron
to the membrane potential at the soma of this readout neu-
ron. We will refer to the vector x(t) as the circuit state at
time t . Note that the readout neurons do not have access to
the analog state of the circuit neurons, but only to the filtered
version of their output spike trains.

Under these unpleasant but apparently unavoidable simpli-
fying assumptions we propose in Sections 4 and 5 new quan-
titative criteria based on rigorous mathematical principles for
evaluating a neural microcircuit C with regard to questions (a)
and (b). We will compare in Sections 6 and 8 the predictions of
these quantitative measures with the actual computational per-
formance achieved by 102 different types of neural microcircuit
models, for a fairly large number of different computational
tasks. All microcircuit models that we consider are based on
biological data for generic cortical microcircuits (as described
in Section 2), but have different settings of their parameters.
It should be noted that the models for neural circuits that are
discussed in this article are subject to noise (in the form of ran-
domly chosen initial values of membrane voltages, and in the
form of biologically realistic models for background noise, see
the precise definition in Section 2, and exploration of several
noise levels in Section 8). Hence the classical theory for compu-
tations in noise-free analog circuits (see, e.g., Siegelmann and
Sontag (1994)) cannot be applied to these models. Rather, the
more negative results for computations in analog circuits with
noise (see, e.g., Maass and Orponen (1998), Maass and Sontag
(1999)) apply to the circuit models that are investigated in this
article.

For the sake of simplicity, we consider in this article
only classification tasks, although other types of computations
(e.g. online computations where the target output changes
continuously) are at least of equal importance for neural
systems. But actually, a theoretical analysis of the capability
of neural circuits to approximate a given online computation
(that maps continuous input streams onto continuous output
streams), see Maass, Natschläger, and Markram (2002) and
in more detail Maass and Markram (2004), has shown that
the so-called separation property of circuit components is a
necessary (and in combination with a condition on the readout
also sufficient) condition for being able to approximate a given
online computation that maps continuous input streams onto
continuous output streams with fading memory. Hence one

2 One can be even more realistic and filter it also by a model for the short
term dynamics of the synapse into the readout neuron, but this turns out to
make no difference for the analysis proposed in this article.

can view the computational tasks that are considered in this
article also as tests of the separation property of small generic
circuits of neurons, and hence of their capability to serve as
a rich reservoir of “basis filters” in the context of that theory,
and hence as subcircuits for online computing with continuous
output streams.

Several results of this article had previously been sketched
in Maass, Legenstein, and Bertschinger (2005).

2. Models for generic cortical microcircuits

Our empirical studies were performed on a large variety of
models for generic cortical microcircuits. All circuit models
consisted of leaky-integrate-and-fire neurons3 and biologically
quite realistic models for dynamic synapses.4 Neurons (20% of
which were randomly chosen to be inhibitory) were located on
the grid points of a 3D grid of dimensions 6×6×15 with edges
of unit length. The probability of a synaptic connection from
neuron a to neuron b was proportional to exp(−D2(a, b)/λ2),
where D(a, b) is the Euclidean distance between a and b, and
λ is a spatial connectivity constant. Synaptic efficacies w were
chosen randomly from distributions that reflect biological data
(as in Maass et al. (2002)), with a common scaling factor Wscale.

Linear readouts from circuits with n − 1 neurons were
assumed to compute a weighted sum

∑n−1
i=1 wi xi (t) + w0 (see

Section 1). In order to simplify notation we assume that the
vector x(t) contains an additional constant component x0(t) =

1, so that one can write w · x(t) instead of
∑n−1

i=1 wi xi (t) + w0.
In the case of classification tasks we assume that the readout
outputs 1 if w · x(t) ≥ 0, and 0 otherwise.

In order to investigate the influence of synaptic connectivity
on computational performance, neural microcircuits were
drawn from the distribution of circuits discussed above for 10
different values of λ (which scales the number and average
distance of synaptically connected neurons) and 9 different
values of Wscale (which scales the efficacy of all synaptic
connections). 20 microcircuit models C were drawn for each
of these 90 different assignments of values to λ and Wscale.
For each circuit a linear readout was trained to perform one
(randomly chosen) out of 280 possible classification tasks on
noisy variations u of 80 fixed spike patterns as circuit inputs u.
See Fig. 1 for two examples of such spike patterns. The target
performance of a linear readout with any such circuit was to
output at time t = 200 ms the class (0 or 1) of the spike pattern
from which the preceding circuit input had been generated (for
some arbitrary partition of the 80 fixed spike patterns into two
classes). Each spike pattern u consisted of 4 Poisson spike

3 Membrane voltage Vm modeled by τm
dVm

dt = −(Vm − Vresting) + Rm ·

(Isyn(t) + Ibackground + Inoise), where τm = 30 ms is the membrane time
constant, Isyn models synaptic inputs from other neurons in the circuits,
Ibackground models a constant unspecific background input and Inoise models
noise in the input. The membrane resistance Rm was chosen as 1 M� in all
sections except for Section 8.

4 Short term synaptic dynamics was modeled according to Markram, Wang,
and Tsodyks (1998), with distributions of synaptic parameters U (initial release
probability), D (time constant for depression), F (time constant for facilitation)
chosen to reflect empirical data (see Maass et al. (2002), for details).
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