
Neural Networks 20 (2007) 391–403
www.elsevier.com/locate/neunet

2007 Special Issue

An experimental unification of reservoir computing methods

D. Verstraeten∗, B. Schrauwen, M. D’Haene, D. Stroobandt

Department of Electronics and Information Systems, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium

Abstract

Three different uses of a recurrent neural network (RNN) as a reservoir that is not trained but instead read out by a simple external classification
layer have been described in the literature: Liquid State Machines (LSMs), Echo State Networks (ESNs) and the Backpropagation Decorrelation
(BPDC) learning rule. Individual descriptions of these techniques exist, but a overview is still lacking. Here, we present a series of experimental
results that compares all three implementations, and draw conclusions about the relation between a broad range of reservoir parameters and
network dynamics, memory, node complexity and performance on a variety of benchmark tests with different characteristics. Next, we introduce
a new measure for the reservoir dynamics based on Lyapunov exponents. Unlike previous measures in the literature, this measure is dependent
on the dynamics of the reservoir in response to the inputs, and in the cases we tried, it indicates an optimal value for the global scaling of the
weight matrix, irrespective of the standard measures. We also describe the Reservoir Computing Toolbox that was used for these experiments,
which implements all the types of Reservoir Computing and allows the easy simulation of a wide range of reservoir topologies for a number of
benchmarks.
c© 2007 Elsevier Ltd. All rights reserved.

Keywords: Reservoir computing; Memory capability; Chaos; Lyapunov exponent

1. Introduction

Recurrent neural networks (RNNs) seem to offer an
attractive method for solving complicated engineering tasks.
They have the advantages of feedforward networks, which
include robustness, learning by example and the ability to
model highly nonlinear systems, and add to that an inherent
temporal processing capability. Possible – and actual –
applications are manifold and include the learning of context
free and context sensitive languages (Gers & Schmidhuber,
2001; Rodriguez, 2001), control and modeling of complex
dynamical systems (Suykens, Vandewalle, & De Moor,
1996) and speech recognition (Graves, Eck, Beringer, &
Schmidhuber, 2004; Robinson, 1994).

RNNs have been shown to be Turing equivalent (Kilian &
Siegelmann, 1996) for common activation functions and can
approximate arbitrary finite state automata (Omlin & Giles,
1994). So, theoretically, RNNs are very powerful tools for
solving complex temporal machine learning tasks. Nonetheless,

∗ Corresponding author. Tel.: +32 9 264 34 04; fax: +32 9 264 35 94.
E-mail address: david.verstraeten@ugent.be (D. Verstraeten).
URL: http://www.elis.ugent.be/SNN (D. Verstraeten).

several factors still hinder the large scale deployment of RNNs
in practical applications. So far, not many learning rules
exist (Haykin, 1999; Jaeger, 2002; Suykens & Vandewalle,
1998) and most suffer from slow convergence rates, thus
limiting their applicability. Recently, however, three similar
solutions for this problem have been proposed independently.

Maass et al. (Maass, Natschläger, & Markram, 2002), Jaeger
(2001a) and Steil (2004) all describe the possibility of using an
RNN without adapting the weights of the internal connections.
In principle, the output can be generated using any type of
classifier or regressor, ranging from a perceptron (Minsky &
Papert, 1969) to a Support Vector Machine (Vapnik, 1995). In
almost all applications, however, a simple linear discriminant
or regression algorithm (Duda, Hart, & Stork, 2001) is used
to compute the desired output. This type of readout function
offers some quite convincing advantages – such as its ease
of training and guaranteed optimality in a least squares sense
– and yields very good results. From this viewpoint, the
function of the reservoir is similar to that of a kernel in the
case of kernel-based methods, by projecting the inputs into a
high-dimensional space which enhances the separability. For
traditional methods, the projection into the high-dimensional
space does not need to be computed because of a convenient

0893-6080/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2007.04.003

http://www.elsevier.com/locate/neunet
mailto:david.verstraeten@ugent.be
http://www.elis.ugent.be/SNN
http://www.elis.ugent.be/SNN
http://www.elis.ugent.be/SNN
http://www.elis.ugent.be/SNN
http://www.elis.ugent.be/SNN
http://www.elis.ugent.be/SNN
http://dx.doi.org/10.1016/j.neunet.2007.04.003


392 D. Verstraeten et al. / Neural Networks 20 (2007) 391–403

mathematical construction (the so-called kernel trick), while
for reservoir methods the projection is explicit. A significant
advantage of the reservoir approach, however, is the fact that
the kernel is able to incorporate temporal information present
in the inputs.

1.1. Using RNNs as reservoirs

The Liquid State Machine (LSM) by Maass et al. (2002)
proposes a generic framework, where the reservoir can
consist of a broad range of node types, and needs to
obey a quite unrestrictive property (the point-wise separation
property) (Maass et al., 2002) in order to be computationally
useful. In practice, most descriptions of the LSM use reservoirs
built from a relatively simple spiking neuron model called the
Leaky Integrate and Fire (LIF) neuron (Maass & Bishop, 2001)
with a dynamic synapse model (Gerstner & Kistler, 2002),
but the use of threshold logic gates (TLGs) has also been
described (Natschläger, Bertschinger, & Legenstein, 2004).
Spiking neuron models are more complex than sigmoidal
neurons but they have been shown to be computationally
more powerful (Maass, 1997). The readout layer, on the other
hand, is also very broadly specified: it needs to be able to
approximate any continuous function over a compact set X ⊆

RN of input values. When both conditions are fulfilled, the
resulting LSM is guaranteed to be able to approximate any
time-invariant function with fading memory1 operating on
timeseries. However, these sufficient conditions are too broad to
offer a practical guideline for constructing reservoirs, and quite
probably universal approximation of temporal functions is not
needed to solve real world problems. So, while this result is
very convincing from a theoretical point of view, the transition
to practical applications is still unclear.

Jaeger independently proposed a very similar computational
idea which he calls Echo State Networks (Jaeger, 2001a).
The main difference with LSMs lies in the type of nodes
that constitute the reservoir: where LSMs are usually built
from spiking LIF neurons, these reservoirs are built from
analog sigmoidal neurons. Here too, a theoretical property is
defined for potentially interesting reservoirs called the echo
state property (Jaeger, 2001a), which expresses – informally
stated – the fact that the influence of inputs on reservoir
states fades away gradually. Further, an upper and lower bound
are defined for the echo state property that are very easy
to compute and depend only on the weight matrix of the
reservoirs. However, this property alone is not sufficient to
guarantee optimal performance for a given problem, and the
search for a good reservoir requires experience and can take
some time. In Jaeger (2002), some guidelines are offered, but a
structured method is still lacking.

Thirdly, Steil proposes an O(N) learning rule for RNNs
called Backpropagation Decorrelation (BPDC) (Steil, 2004).
The BPDC rule is an extension of a state-of-the-art learning
algorithm for RNNs (Atiya–Parlos recurrent learning (Atiya &

1 This means that the current output depends on inputs from a finite time
window in the past.

Parlos, 2000)). It appears that this APRL learning rule restricts
the adaptation of the weights to the output layer, effectively
splitting the RNN into a reservoir and a readout layer. Only
the weights to the output layer and the recurrent connections
inside the output layer are trained. Thus, the use of an RNN as
a reservoir was attained here from an entirely different angle
than the previous two approaches. Here too, sigmoidal neurons
are used, but a significant difference between BPDC reservoirs
and ESNs is the fact that feedback connections from the readout
layer into the reservoir and into the readout layer itself are used,
whereas in practice this is hardly ever the case for ESNs.

1.2. Applications of reservoir computing

Several successful applications of reservoir computing to
both ‘abstract’ and real world engineering applications have
been reported in the literature. Abstract applications include
dynamic pattern classification (Jaeger, 2001b), autonomous
sine generation (Jaeger, 2001a; Verstraeten, Schrauwen, &
Stroobandt, 2005) or the computation of highly nonlinear
functions on the instantaneous rates of spike trains (Maass,
Natschlger, & Markram, 2004). In robotics, LSMs have been
used to control a simulated robot arm (Joshi & Maass, 2004),
to model an existing robot controller (Burgsteiner, 2005b), to
perform object tracking and motion prediction (Burgsteiner,
2005a; Maass, Legenstein, & Markram, in press) or event
detection (Jaeger, 2005). ESNs have been used in the context
of reinforcement learning (Bush & Anderson, 2005). Also,
applications in the field of Digital Signal Processing (DSP)
have been quite successful, such as speech recognition (Maass,
Natschläger, & Markram, 2003; Skowronski & Harris, 2006;
Verstraeten, Schrauwen, Stroobandt, & Van Campenhout,
2005) or noise modeling (Jaeger & Haas, 2004). Finally, the use
of reservoirs for chaotic timeseries generation and prediction
has been reported in Jaeger (2001b, 2003), Steil (2005, 2006).

1.3. Comparing reservoir computing methods

In this contribution, we offer an experimental overview of
the different implementations of reservoir computing described
in the literature. In Section 2, we present experimental results
for benchmarks with different characteristics. Section 2.1
shows the relation between the complexity of the reservoir
nodes and the performance on three tasks. Section 2.2
investigates the effects of memory on the node level and the
reservoir level. Thirdly, Section 2.3 links three existing bounds
for the echo state property to the actual dynamics in the
network, quantified using a Lyapunov-inspired method as a
measure of the network dynamics. In Section 3, we present a
novel toolbox we developed to do this work, that incorporates
all reservoir implementations currently described and some
novel ones. We outline its modular structure and describe which
components are present. In Section 4, finally, we conclude and
outline future work.



Download English Version:

https://daneshyari.com/en/article/404891

Download Persian Version:

https://daneshyari.com/article/404891

Daneshyari.com

https://daneshyari.com/en/article/404891
https://daneshyari.com/article/404891
https://daneshyari.com

