
A two-stage constructive method for the unweighted minimum string
cover problem

Manuel Lozano a, Francisco J. Rodriguez a,⇑, Carlos García-Martínez b

a Department of Computer Science and Artificial Intelligence, University of Granada, Granada 18071, Spain
b Department of Computing and Numerical Analysis, University of Córdoba, Córdoba 14071, Spain

a r t i c l e i n f o

Article history:
Received 3 September 2014
Received in revised form 9 January 2015
Accepted 10 January 2015
Available online 17 January 2015

Keywords:
Unweighted minimum string cover problem
Constructive two-stage algorithm
Combinatorial optimization
Identifying parts within sets of DNA
sequences
Dictionary generation

a b s t r a c t

In this work, we propose a novel constructive method to deal with the unweighted minimum string cover
problem. Given a set of strings S, this defiant optimization problem aims to find a minimum set of sub-
strings M from S such that every string in S can be written as a concatenation of the strings in M. This
problem has challenging real-world applications, especially in the field of computational biology.

The proposed constructive algorithm is composed of two stages that are executed iteratively. The
objective of the first stage is to find frequent substrings in S to be included in M. The aim of the second
stage is to simplify the set M to try to get a minimal set. Extensive computational experiments reveal that
the proposed algorithm is highly effective for solving complex instances involving up to 100 000 strings in
S as compared to the current state-of-the-art method.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Given a set of strings S, a cover M of S is a set of substrings from
S so that each string s 2 S can be built by concatenating strings in
M. The minimum string cover (MSC) problem aims to find the cover
M with minimal cost, given a cost for each substring in M. In the
unweighted MSC (uMSC), the cost of each element m 2 M is 1,
and thus the objective is to minimize the cardinality of the set M.

The uMSC problem was shown to be NP-complete by Neraud
[11]. Several real-world applications of the uMSC problem have
been described in the literature. In the first place, Bodlaender
et al. [2] presented an application to the computational biology field
to determine the 3-D structure of biopolymers from their
sequences, though it appears under the name of dictionary genera-
tion. Secondly, Canzar et al. [3] considered the application of uMSC
to the field of data storage to obtain a compact representation of a
set of strings.

Moreover, recently Blakes et al. [1] described the application of
uMSC as part of the problem that arises when identifying parts
within a given set of DNA sequences. In this work, they focus on
the second stage of this problem that addresses the generation of
plans to construct the targets that minimize the concatenations

needed. The first stage in which common building blocks are iden-
tified is equivalent to the uMSC problem.

Despite the potential applications described above, the stud-
ies on the uMSC problem have mostly addressed its theoretical
aspects [11,2]. The only practical approach for solving the uMSC
problem, as far as we know, was recently presented by Canzar
et al. [3]. In this work, the authors propose a branch and bound
method whose bounds are obtained through a repeated compu-
tation of the shortest path problem in a directed acyclic graph
associated with the strings in S. This method requires the calcu-
lation of all the different decompositions into substrings of each
string in S. Each node of the branch and bound tree represents a
subset of those substrings that must be included into the
solution and a subset of substrings that are forbidden. The
experimental study performed shows for the first time that
non-trivial uMSC instances can be solved in reasonable time. In
particular, the instances used have up to 100 strings in S. Moreover,
this experimental comparison includes an study on instances
with costs different from 1 for each element in M (weighted
MSC) and up to 620 strings in S. However, Blakes et al. [1] high-
lighted that the existing approaches so far cannot effectively
scale up to lengths from a few hundred to several thousand base
pairs required for most DNA libraries.

Previous works have also studied a variant of the MSC problem
known as l-cover problem [9], where each substring in S must be
produced by the concatenation of at most l substrings, where l is

http://dx.doi.org/10.1016/j.knosys.2015.01.003
0950-7051/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: lozano@decsai.ugr.es (M. Lozano), fjrodriguez@decsai.ugr.es

(F.J. Rodriguez), cgarcia@uco.es (C. García-Martínez).

Knowledge-Based Systems 77 (2015) 103–113

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2015.01.003&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2015.01.003
mailto:lozano@decsai.ugr.es
mailto:fjrodriguez@decsai.ugr.es
mailto:cgarcia@uco.es
http://dx.doi.org/10.1016/j.knosys.2015.01.003
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


assumed to be constant. In particular, Ferdous et al. [4] developed
several ant colony optimization approaches to deal with this prob-
lem. The search space is defined over the set of substrings obtained
from every possible decomposition of the strings in S, like in the
method proposed by Canzar et al. [3].

In this work, we propose a novel two-stage constructive method
to tackle the uMSC problem. In the first stage, the proposal gener-
ates a cover set where the substrings included (building blocks) are
generated in a constructive manner, as opposed to the previous
methods that are based on decompositions. It starts from the basic
symbols of the alphabet and iteratively adds new building blocks
to the cover, which are constructed starting from the current ones
according to the frequency with which they appear in S. The aim of
the second stage is to simplify the best cover set found so far to try
to obtain a minimal set.

The remainder of this paper is organized as follows. Section 2
gives a background of the basic notation for the uMSC problem
and defines it formally. Section 3 details our two-stage construc-
tive method for the tackled problem. Section 4 describes the
empirical studies carried out in order to compare the results of
our proposal with those of other approaches from the literature.
Finally, Section 5 contains a summary of results and conclusions.

2. Notation and problem definition

In this section, we provide a description of the notation for the
problem, based on the previous works by Canzar et al. [3] and
Schwiegelshohn [13]. Furthermore, using this notation, we define
formally the uMSC problem.

MSC problem input consists of a set of strings S over a symbolic
alphabet R. Every string in S is denoted by si for i 2 f1; . . . ; jSjg,
where jSj is the cardinality of S. String si contains jsij symbols,
and the position p in the string si is represented by the pair ði; pÞ
with p 2 f1; . . . ; jsijg. Additionally, let kSk ¼

P
si2Sjsij be the total

number of symbols in S.

Example 2.1. Consider the set of strings S = {a, aab, aba} where the
alphabet R={a,b}. Then, the cardinality of the set S is 3; kSk is
7; s1=a, s2=aab, and s3=aba. The position 2 in the string s3, for
example, occupied by the character b is represented by the pair
(3,2).

A triplet ði; p; qÞ with q 2 f1; . . . ; jsijg and p 6 q is an occurrence
and represents the positions p to q of the string si. The substring
that occurs at positions p to q in the string si is denoted by
siðp; qÞ. The set of all occurrences in S is denoted by CðSÞ and
TðSÞ � R� is the set of all substrings in S, where R� is the set of all
strings that can be formed with the alphabet R. Note that every
string si 2 S also belongs to TðSÞ and hence S # TðSÞ. We use tj with
j 2 f1; . . . ; jTðSÞjg to denote a specific substring.

Example 2.2. Following the above example, the occurrence of the
substring s3ð2;3Þ = ba that starts at position 2 and ends at position
3 is represented by the triplet ð3;2;3Þ. CðSÞ ¼ fð1;1;1Þ; ð2;1;1Þ;
ð2;1;2Þ; ð2;1;3Þ; ð2;2;2Þ; ð2;2;3Þ; ð2;3;3Þ; ð3;1;1Þ; ð3;1;2Þ; ð3;1;3Þ;
ð3;2;2Þ; ð3;2;3Þ; ð3;3;3Þg and TðSÞ ¼ fa; aa; aab; ab; b; aba; bag. It is
important to highlight the difference between CðSÞ and TðSÞ. For
example, let us consider the substring ab from TðSÞ that has two
occurrences in S. These occurrences appear in the strings s2 and s3

and are represented by two different triplets in CðSÞ (ð2;2;3Þ and
ð3;1;2Þ, respectively).

Furthermore, we assign to every occurrence ði; p; qÞ the corre-
sponding substring siðp; qÞ and, therefore, we can define the set
Cj ¼ fði; p; qÞ 2 CðSÞjsiðp; qÞ ¼ tjg that contains all the occurrences
that are instances of the substring tj.

Example 2.3. As we saw before, for the substring t3=ab, the set
C3 ¼ fð2;2;3Þ; ð3;1;2Þg.

A set of occurrences Di � CðSÞ is a factorization of the string
si 2 S if we can order the elements of Di ¼ fði; p0; q0Þ;
ði; p1; q1Þ; . . . ; ði; pn; qnÞg such that p0 ¼ 1; qn ¼ jsij and
pkþ1 ¼ qk þ 1 for k 2 f0; . . . ;n� 1g.

Example 2.4. The set D2 conformed by the occurrences (2,1,1) and
(2,2,3) is a factorization of the string s2. This fact can be easily seen
as the substring that appears in the occurrence (2,1,1) is a and that
in (2,2,3) is ab, resulting their concatenation in the string s2.

Then, M # TðSÞ is a cover of S (or M covers S) if and only if the set
of occurrences D ¼ fði; p; qÞ 2 CðSÞjsiðp; qÞ 2 Mg contains a factor-
ization for every s 2 S.

Example 2.5. M = {a, ab} is a cover of S since D1 ¼ fð1;1;1Þ ¼ ag is
a factorization of s1; D2 ¼ fð2;1;1Þ ¼ a; ð2;2;3Þ ¼ abg of s2, and
D3 ¼ fð3;1;2Þ ¼ ab; ð3;3;3Þ ¼ ag of s3.

Given a weight function w : TðSÞ ! Rþ0 , the minimum string cover
(MSC) consists of finding a set of strings M # TðSÞ such that the two
following conditions are met: (1) M covers S and (2)

P
t2M wðtÞ is

minimal. The most basic and also classic version of the problem
uses unit weights for all substrings, i.e. wðtÞ ¼ 1 for all t 2 TðSÞ.
In this case, the minimum string cover is a cover of S with minimal
cardinality and the problem is called unweighted MSC (uMSC)
problem.

3. Two-stage constructive method for the uMSC problem

As previously mentioned, we propose a two-stage constructive
method (DISFY that stands for DIScover and simpliFY) to deal with
the uMSC problem. The objective of the first stage is to find fre-
quent substrings (basic building blocks) in the strings forming the
set S. This discovering process is done constructively by starting
with a cover set M that contains the elements of the alphabet R,
which trivially can construct any string in S. From the current ele-
ments of M, new building blocks are built by performing concate-
nation operations. Those building blocks that appear more
frequently in S are chosen to form part of the current cover M. In
order to measure the frequency of appearance of a given substring
m, DISFY uses the cardinality of the set of occurrences of that sub-
string. In the second stage, a simplifying process of the best cover
set found is done in order to minimize its cardinality. After the sec-
ond stage, the algorithm continues again with the first stage, start-
ing with the best cover set found so far.

The rest of the section is organized as follows. In Section 3.1, we
provide an overview of the overall DISFY algorithm and, in Sections
3.2 and 3.3, we describe, in detail, the operation of the two stages
that conform it. Finally, in Section 3.4, we illustrate the operation
of the algorithm through the execution on a concrete example.

3.1. Overall algorithm

Fig. 1 shows the pseudocode of the main procedure of the pro-
posed algorithm. DISFY maintains a current solution
M ¼ fm1; . . . ;mcg that is a cover of S, which is initialized to R at
the beginning of the execution. In addition, our algorithm forms,
for each substring mk 2 M, a specific set of occurrences Fk,

Fk ¼ fði;p; qÞ 2 CðSÞjsiðp; qÞ ¼ mkg;

which instantiate mk in the strings of S. We should point out that
the Fk sets allow a particular factorization for each s 2 S to be
obtained. Therefore, Fk does not need to contain all the occurrences
of mk in S (Ck) but only those necessary for that particular factoriza-

104 M. Lozano et al. / Knowledge-Based Systems 77 (2015) 103–113



Download English Version:

https://daneshyari.com/en/article/404942

Download Persian Version:

https://daneshyari.com/article/404942

Daneshyari.com

https://daneshyari.com/en/article/404942
https://daneshyari.com/article/404942
https://daneshyari.com

