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a b s t r a c t

The Inertial Confinement Fusion (ICF) laser device consists of thousands of Metalized Film Capacitors
(MFC). The Belief Rule Base (BRB) system has shown privileges in reflecting complex system dynamics.
However, the BRB system requires the referenced values of each attribute to be limited. The traditional
BRB learning and training approaches are no longer applicable since the referenced values of the
attributes in the BRB system are pre-determined. A parameter learning approach is proposed with three
strategies and each strategy is designed for one specific scenario. Strategy I (for Scenario I) is designed
when only the training dataset is selectable. Strategy II (for Scenario II) is designed when new referenced
values are predictable yet there is only one scale in the conclusion part. Strategy III (for Scenario III) is
designed when new referenced values are predictable and there are multiple scales in the conclusion
part. The Differential Evolution (DE) algorithm is used as the optimization engine to identify the key
referenced values. A case is studied to validate the efficiency of the proposed parameter learning
approach with multiple referenced values. The comparative results show that the parameter learning
approach performs best in Scenario III.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Inertial Confinement Fusion (ICF) laser device uses the high
power laser for the thermonuclear fusion in the laboratory condi-
tion [1]. ICF, such as the National Ignition Facility (NIF) in the Uni-
ted States and the ShenGuang in China [2], consists of thousands of
Metalized Film Capacitors (MFC). MFC is crucial to reliability anal-
ysis and maintenance policy-making for the energy systems as
well as for the high power laser devices themselves. Therefore it
is necessary to evaluate the reliability of MFC, which in essence
is to predict MFC’s residual life or its residual life probability [3].

The traditional MFC reliability analysis estimates the parame-
ters based on the assumption that the failure data follows the Wei-
bull distribution [4]. However, since MFC is highly-reliable and has
long-life expectancy, it is hard to gather enough failure data within
a short period. Therefore, the traditional reliability analysis has lost
its privileges in dealing with most practical cases. More attention is
given to the degradation data based methodology. Zhao and Liu [5]
proposed a Poisson-based degradation process for MFC reliability

analysis. Peng et al. [6] considered the degradation process of
MFC as a Wiener process based on which the average residual life
of MFC was predicted.

Wang et al. [2,3,7] proposed a residual life prediction approach
in which the degradation data on single MFC performance and the
prior distribution degradation information were integrated. The
approach included model construction, the Expectation–Maximi-
zation (EM) [8], and the Bayes approach. However, it was not appli-
cable when there were both degradation data and life related
information, which is a common practical situation.

Although there are multiple factors that share influence on the
residual life, the most common form of the residual life probability
function is a time series. In the residual life probability function,
the independent variable (input) is the time and the dependent
variable (output) is the residual life probability. During the forma-
tion of the residual life probability function, there could be multi-
ple sets of data in which contains the time as the input and the
residual life probability as the output.

The Belief Rule Base (BRB) system [9,10] which is a collection of
rules in the same belief structure [11–13] is applied to model the
process of predicting the residual life probability of MFC. The
BRB system is a powerful tool in representing system dynamics
and integrating different types of information under uncertainty

http://dx.doi.org/10.1016/j.knosys.2014.09.006
0950-7051/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: Department of Management, National University of
Defense Technology, Changsha 410073, PR China. Tel.: +86 0731 84574569.

E-mail address: mjli11260744@gmail.com (M. Li).

Knowledge-Based Systems 73 (2015) 69–80

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2014.09.006&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2014.09.006
mailto:mjli11260744@gmail.com
http://dx.doi.org/10.1016/j.knosys.2014.09.006
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


[13]. The application fields of the BRB system include the Multiple
Attribute Decision Analysis (MADA) problem [14], group decision
making [15], risk analysis [16], customer perception risk analysis
[17], trade-off analysis [18], system readiness assessment [19],
military capability evaluation [20], etc. To apply the BRB system
in the residual life probability prediction of MFC, there is only
one antecedent attribute, the time, which is required to be of lim-
ited number of the referenced values.

Although the background of this study is focused on the resid-
ual life probability prediction of MFC, the parameter learning
approach is discussed in a more generic fashion so as not to lose
its versatility.

There are two kinds of BRB systems classified by their origina-
tions: the BRB system derived from the experts and the BRB system
derived from practical systems.

For the BRB system derived from the experts, the referenced
values of each attribute are fixed while the attributes are change-
able. Chang et al. [21] used multiple dimensionality reduction
techniques for the structure learning approach to downsize the
BRB system. In Chang’s structure learning study [21], the attributes
of the BRB system are selectable while the referenced values are
fixed. As in this study, the situation is reversed: the referenced val-
ues of the attributes in the BRB system are selectable while attri-
butes are fixed. Therefore the structure learning approach is not
applicable.

For the BRB system derived from practical systems, the situa-
tion is reversed since the attributes are fixed while the referenced
values are selectable. There have been extensive studies regarding
on the training and learning of the BRB system derived from prac-
tical systems. The first generic BRB learning framework was pro-
posed by Yang et al. [22] with an optimization model. Xu et al.
[23] proposed another BRB training approach and applied it in
the pipeline leak detection. Zhou et al. [24,25] argued that these
approaches were offline and proposed an online updating
approach which however still required the attributes must be dis-
cretized first. In Refs. [26,27], the two attributes in the pipeline
leak detection case, the ‘‘FlowDiff’’ and ‘‘PressureDiff’’ were discret-
ized into seven and eight parts of equal size before the learning
process. In Ref. [28], Chen also discretized the only attribute ‘‘x’’
into six/four parts with seven/five referenced values and then
adapted the learning process. In conclusion, these training and
learning approaches demanded that the referenced values of the
attributes must be pre-determined. This leads to the main work
of this study: the parameter learning of the BRB system, which
in essence is to identify the key referenced values of each
attribute.

There are fundamentally differences between structure learning
and parameter learning for the BRB systems. To summarized, the
targeted object and the techniques to be applied are different.

The structure learning approach for BRB system is targeted at
expert systems whose information are mainly derived from
experts’ knowledge and experiences, mostly through brainstorm-
ing and/or questionnaires. The attributes of this kind information
are selectable whereas the referenced values of these attributes
are fixed. It is like the questions and the choices on a questionnaire,
where the questions are selectable yet the number of the choices is
fixed.

Comparatively, the parameter learning approach faces a com-
pletely different challenge. Since the targeted systems are based
on actual systems with mostly continuous attributes, the key prob-
lem is to identify the most representative referenced values of each
attribute so that an appropriate BRB system can be constructed. In
this case, the attributes are fixed (decided by experts or simply the
readings of a practical system) whereas the referenced values must
be discretized from the continuous attributes, which is just the
work of this study.

As for the techniques used in the two kinds of studies, they are
completely different as well. For the structure learning approach,
certain dimensionality reduction techniques (which are originally
used in feature extraction and image processing) are applied to
identify the key attributes. For the parameter learning approach,
the Differential Evolutionary (DE) algorithm is applied to identify
the key referenced values out of the continuous attribute(s) with
a set of readings from metalized film capacitor (also acquires cer-
tain mathematical calculation) as the training dataset.

The challenge of the parameter learning for the BRB system lies
in that the correlation between the input and the output is
unknown (if it is known, there would be no meaning to conduct
the parameter learning). This challenge must be addressed in mul-
tiple scenarios regarding on whether just the initial dataset is
available or new referenced values could be predicted.

In the BRB parameter learning approach, an optimization model
is constructed with the referenced values of the attributes (of the
BRB system) as extra parameters to be estimated. With this in
mind, an optimization engine is required. Traditionally, certain
mathematical process is applied which however requires the initial
solution identified and the inference result may be trapped in local
optimality if the initial solution is poorly selected.

To meet this challenge, the Differential Evolutionary (DE) algo-
rithm is an applicable candidate. The DE algorithm, as one of the
most advanced Evolutionary Algorithms (EAs), was first proposed
by Store et al. [29]. Das and Suganthan [30] summarized that DE
was much simpler (with less parameters) and straightforward
compared with other EAs since DE outperformed several other
algorithms in a series of performance contests (ICEOs) [31,32].
Moreover, DE does not require the initial solution and has been
proved to be of global optimization capabilities [30–32]. Certain
progress on DE has been made in both practical fields such as
parameter identification on a building thermal model [33] and
large scale evolutionary optimization [34], and theoretical fields
regarding on the adaptive mutation and parameter control [35],
competitive population evaluation [36], etc. There have been sev-
eral improved DE variants with real parameter optimizers. How-
ever it is believed that the Classical DE (CDE) [29] is sufficient for
this study. MAE is used to as the efficiency measure of the pro-
posed parameter learning approach.

Note that it is not the intension of this study to identify DE as
the most appropriate technique and/or algorithm for the parame-
ter learning approach. Instead, it is believed that each technique
and/or algorithm has its own advantages and therefore it has its
own fittest application fields. For the DE algorithm, it is proved
to be sufficient by the case study results in this study.

The remainder of this study is organized as follows. The back-
ground and the problem are introduced in Section 2. The parame-
ter learning approach is proposed in Section 3 using three
strategies. Section 3 also introduces the basics of DE. In Section 4,
a case is studied in corresponding three scenarios. This study is
concluded in Section 5.

2. Background and problem demonstration

2.1. Background

A generic process to predict the residual life probability of MFC
is described as following [2,3,7]:

(1) Establish the assumptions for following analysis, and the
most basic of which is that the degradation process of MFC
is a Weiner process.

(2) Use the Wiener process to model the residual life prediction
of MFC. In order to improve the accuracy of the residual life
prediction, certain parameters are estimated.
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