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a b s t r a c t

The attribute set in an information system evolves in time when new information arrives. Both lower and
upper approximations of a concept will change dynamically when attributes vary. Inspired by the former
incremental algorithm in Pawlak rough sets, this paper focuses on new strategies of dynamically updat-
ing approximations in probabilistic rough sets and investigates four propositions of updating approxima-
tions under probabilistic rough sets. Two incremental algorithms based on adding attributes and deleting
attributes under probabilistic rough sets are proposed, respectively. The experiments on five data sets
from UCI and a genome data with thousand attributes validate the feasibility of the proposed incremental
approaches.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

With today’s databases increase at an unprecedented rate,
information systems evolve over time. Various approaches for
updating knowledge incrementally are getting more and more
popular. The algorithms or strategies for updating knowledge from
information systems are vital in inductive machine learning and
data mining.

An information system is composed by the objects, the
attributes and the domain of attributes’ values [30]. The literature
for updating knowledge from information systems are mainly
on three aspects, namely, variation of objects (instances) [2,7,19,
22,23,29,31,43,46,57,58,60,62], variation of attributes (features)
[4,9,20,21,26,32,59,64] and variation of attributes’ values
[5,6,8,24,25,27]. All these studies help decision makers to update
knowledge with different viewpoints from different kinds of
information systems.

By considering many databases with thousands of attributes
(features), we face lots of massive challenges in real technical
applications. The updating strategies and incremental algorithms
under the variation of attributes are significantly affecting the
knowledge updating, both in quantitative and qualitative aspects
[21]. In this paper, we mainly focus on discussing scenarios of
the variation of attributes.

In view of granular computing, the variation of attributes affects
the granularity of the knowledge space. Yao pointed out that the
two simple and commonly operators named ‘‘Zooming-in’’ and
‘‘Zooming-out’’ can describe the dynamic character while systems
vary [51]. The Zooming-in operator refines the granules of the uni-
verse, like decomposing a granule into many granules; The Zoom-
ing-out operator coarsens the granules of the universe by omitting
some details of the problem, such as combining many granules to
form a new granule [51]. The granularity becomes refining when
adding the attributes. On the contrary, the granularity becomes
coarsening when deleting the attributes. Qian et al. proposed a
multi-granulation rough set model and discussed several impor-
tant measures in both complete information systems [40] and
incomplete information systems [41]. Furthermore, Hu et al. unit-
ized the granularity to the neighborhood rough set for heteroge-
neous feature subset selection. They further provided useful
properties and prefect experimental results on variation of feature
numbers [14,15].

Rough set theory (RST) is one special case of granular comput-
ing [34]. In RST, the variation of attributes, includes adding and
deleting of attributes, affects reducts and approximations of a con-
cept in information systems. For incremental attribute reduction
approaches, Qian et al. investigated an accelerator for attribute
reduction in positive approximation [42]. Hu et al. proposed an
incremental attribute reduction based on elementary sets [13].
For incremental approaches of updating approximations in RST,
Chan discussed an incremental approach for updating approxima-
tions of a concept when adding or deleting an attribute in a
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complete information system by using the lower and upper bound-
aries [3,4]. Li et al. presented a method for updating approxima-
tions of a concept in an incomplete information system under
the characteristic relation when the attribute set varies over time
[21]. Cheng proposed an incremental model for fast computing
the rough fuzzy approximations [9]. Li et al. investigated an
approach for incremental updating approximations in domi-
nance-based rough sets under the variation of the attribute sets
[19]. Luo et al. discussed an approach for incremental updating
approximations in set-valued ordered decision systems under the
attribute generalization [32]. Zhang et al. proposed a rough sets
based matrix approaches to compute the incremental updating
approximations [58], and further considered a parallel method
for computing rough set approximations for massive data analysis
[60,61,63]. Davide summarized the classification of dynamics in
rough sets with synchronic cases and diachronic cases. He further
discussed dynamic in information systems, approximation spaces
and coverings, which provided a basic framework on dynamic
studies of rough sets [10,11].

As a generalized model of RST, probabilistic rough sets (PRS)
allow a flexible approximation boundary region by using the
threshold parameters with a better tolerance ability for inconsis-
tent data [65,67]. The model of PRS generalizes the restrictive def-
inition of the lower and upper approximations by allowing certain
acceptable levels of errors. A pair of threshold parameters define
the lower and upper approximations [52,53]. By considering the
PRS leads to a new direction of research and applications on one
hand and some confusions and inconsistencies on the other [53],
this paper focuses on development of the incremental approach
for updating approximations in PRS under the variation of
attributes.

The rest of the paper is organized as follows: Section 2 provides
basic concepts of Pawlak rough sets and PRS. The related proposi-
tions, strategies and algorithms for incremental learning knowl-
edge in PRS are presented when attributes vary in Section 3.
Section 4 illustrates the proposed approach with experiments
under five data sets from UCI and a genome data with thousand
attributes. The paper ends with conclusions and further research
topics in Section 5.

2. Preliminaries

Basic concepts, notations and results of rough sets as well as
their extensions are outlined in this section [1,16,18,33,34,36,38,
39,45,47–50,52–55,65,66].

2.1. Pawlak rough sets

An approximation space apr ¼ ðU;RÞ is defined by a universe U
and a binary relation R. Let U be a finite and non-empty set and R
be an binary relation on U. The pair apr ¼ ðU;RÞ is defined as
Pawlak approximation space when R is an equivalence relation.
In Pawlak rough sets, the equivalence relation R induces a partition
of U, denoted by ½x�R or ½x�. For a subset X # U, its lower and upper
approximations are defined respectively by:

RðXÞ ¼ fx 2 Uj½x�# Xg;
RðXÞ ¼ fx 2 Uj½x� \ X – ;g:

ð1Þ

Intuitively, these two approximations divide the universe U into
three disjoint regions: the positive region POSRðXÞ, the negative
region NEGRðXÞ and the boundary region BNDRðXÞ.

POSRðXÞ ¼ RðXÞ;
BNDRðXÞ ¼ RðXÞ � RðXÞ;
NEGRðXÞ ¼ U � RðXÞ:

ð2Þ

The positive region POSðXÞ is defined by the lower approxima-
tion, the negative region NEGðXÞ is defined by the complement of
the upper approximation, and the boundary region BNDðXÞ is
defined by the difference between the upper and lower approxima-
tions. If RðXÞ ¼ X ¼ RðXÞ holds, a subset X of U is definable in ðU;RÞ.
Otherwise, X is indefinable in ðU;RÞ.

2.2. Probabilistic rough sets

To introduce the PRS, Pawlak and Skowron suggested using a
rough membership function to redefine the two approximations
[37]. The rough membership function lA is defined by:

lAðxÞ ¼ PrðXj½x�Þ ¼ j½x� \ Xj
j½x�j ; ð3Þ

where j � j stands for the cardinal number of objects in sets. PrðXj½x�Þ
denotes the conditional probability of the classification. The degree
of the overlap between an equivalence class ½x� and a set X is
calculated as the conditional probability PrðXj½x�Þ of the set given
the equivalence class ½x�.

From a rough membership function, the Pawlak approximations
in Eq. (1) can be equivalently defined respectively as follows:

RðXÞ ¼ fx 2 UjPrðXj½x�Þ ¼ 1g;
RðXÞ ¼ fx 2 UjPrðXj½x�Þ > 0g:

ð4Þ

In Eq. (4), two extreme values, 1 and 0, are utilized to define
the two approximations by rough membership function. The
classifications in the lower approximation must be absolutely
consistent. However, the definition in Eq. (4) is too strict because
the magnitude of the value PrðXj½x�Þ is not taken into account
[44,49,65]. A main result in PRS is parameterized probabilistic
approximations, which is similar to the notion of a-cuts of fuzzy
sets [53]. This can be done by replacing the values 1 and 0 in
Eq. (5) by a pair of parameters a and b. The ða; bÞ-lower approx-
imation and ða; bÞ-upper approximation are defined respectively
as follows.

Rða;bÞðXÞ ¼ fx 2 UjPrðXj½x�ÞP ag;

Rða;bÞðXÞ ¼ fx 2 UjPrðXj½x�Þ > bg:
ð5Þ

In (5), an equivalence class ½x� is a part of the lower approxima-
tion if the conditional probability PrðXj½x�Þ is above a, and it is a
part of the upper approximation if the conditional probability
PrðXj½x�Þ is above b. The ða; bÞ-probabilistic positive, boundary
and negative regions can be defined by the ða; bÞ-probabilistic
lower and upper approximations.

POSða;bÞðXÞ ¼ fx 2 UjPrðXj½x�ÞP ag;

BNDða;bÞðXÞ ¼ fx 2 Ujb < PrðXj½x�Þ < ag;

NEGða;bÞðXÞ ¼ fx 2 UjPrðXj½x�Þ 6 bg:

ð6Þ

The parameters a and b allow certain acceptable levele of
errors, and the PRS makes the process of decision making more
reasonable. Specially, when we set a ¼ b ¼ 0:5, it becomes the
0.5-probabilistic rough set model [35]; when we set aþ b ¼ 1
and a > 0:5, it becomes the symmetric variable precision rough
set model [65]; when we set 0 6 b < a 6 1, it becomes the asym-
metric variable precision rough set model [17]. In addition, the
values of a and b can be automatically computed by using the
bayesion minimum conditional risk criterion in decision-theoretic
rough set models [28,49]. In our following discussions, we focus
on investigating the incremental updating approximations
approaches in PRS.
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