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The objective of this paper is to construct reliable belief rule-based (BRB) models for the identification of
uncertain nonlinear systems. The BRB methodology is developed from the evidential reasoning (ER)
approach and traditional IF-THEN rule based system. It can be used to model complicated nonlinear cau-
sal relationships between antecedent attributes and consequents under different types of uncertainty. In
a BRB model, various types of information and knowledge with uncertainties can be represented using
belief structures, and a belief rule is designed with belief degrees embedded in its possible consequents.
In this paper, we first introduce the BRB methodology for modelling uncertain nonlinear systems. Then
we present a comparative analysis of three BRB identification models through combining the BRB meth-
odology with nonlinear optimisation techniques. The novel BRB identification models using [..-norm and
minimising mean uncertainties in belief rules (MUBR) show remarkable capabilities of capturing the
lower and upper bounds of the interval outputs of uncertain nonlinear systems simultaneously. Trade-
off analysis between identification accuracy and interval credibility are briefly discussed. Finally, a
numerical study of a simplified car dynamics is conducted to demonstrate the capability and effective-
ness of the BRB identification models for the modelling and identification of uncertain nonlinear systems.
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1. Introduction

Identification of an uncertain nonlinear system is mainly con-
cerned with characterising the unknown nonlinear system on the
basis of measured input-output data in an uncertain environment
[26]. It is of fundamental importance in predictive control, fault
diagnosis, signal processing and decision analysis, since most
real-life systems are nonlinear, and are often associated with
uncertainties due to noises, unpredictable disturbance and mea-
surement errors, uncertain physical parameters, incomplete
knowledge, etc. [1,43,40,30,20]. Thus a great difficulty in applying
traditional identification techniques is dealing with those uncer-
tainties [2,4]. Over past few decades, extensive studies have been
conducted for effectively identifying uncertain nonlinear systems,
especially with the advent of neural network and fuzzy rule-based
system techniques [34,29,17,12]. Neural networks and fuzzy rule-
based systems often outperform traditional identification methods
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in terms of both approximation accuracy and identification reli-
ability. Sjoberg et al. [34] provided a unified overview on nonlinear
black-box system identification models with structures based on
neural networks and fuzzy rules. Tseng and Chen [40] applied
the Takagi-Sugeno fuzzy model to model uncertain nonlinear
systems and proposed H,, fuzzy filter design for state estimation
of nonlinear discrete systems with bounded but unknown
disturbance. Nelles [29] provided an in-depth analysis of nonlinear
system identification methods, including linear and polynomial
approximation, neural networks and fuzzy models. Zheng et al.
[49] presented a robust Takagi-Sugeno fuzzy control model for
nonlinear systems with both parameter uncertainty and external
disturbance. Choi [12] developed an adaptive fuzzy control system
for uncertain Takagi-Sugeno fuzzy models with norm-bounded
uncertainty on the basis of the variable structure control (VSC) the-
ory. Gonzalez-Olvera and Tang [17] presented a continuous-time
recurrent neuro-fuzzy network for the black-box identification of
a class of dynamic nonlinear systems.

However, these aforementioned methods may not be directly
applicable to some real-world uncertain nonlinear systems,
because they involve some restrictive assumptions, such as
Gaussian-distributed noises, deterministic disturbances and
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bounded uncertain parameters [5]. In addition, the outputs of
uncertain systems are usually represented on the basis of predicted
point values. In uncertain systems, any uncertainties usually gen-
erate uncertain outputs and the commonly used point prediction
delivers no information about different kinds of uncertainties
[28]. Therefore, the identification of using prediction intervals
(i.e., estimated range of predictions) to model uncertain outputs
has attracted much attention in recent years. Shrestha and Solom-
atine [33] employed prediction intervals to identify the uncertainty
of the model outputs using different machine learning techniques,
such as locally weighted regression and artificial neural network.
Mazloumi et al. [28] discussed how uncertainty arising from both
model structure and training data can be quantified through con-
structing prediction intervals in neural networks. Khosravi et al.
[21] proposed a lower upper bound estimation (LUBE) method
for construction of neural network-based prediction intervals.
The LUBE method uses a neural network with two outputs to con-
struct upper and lower bounds of the prediction intervals, and both
interval width and coverage probability are incorporated into the
training objective function. However, due to the black-box nature
of neural networks, these neural network-based prediction inter-
vals cannot be interpreted in an explicit way and does not reflect
uncertain knowledge. Furthermore, on the basis of fuzzy identifica-
tion methodology, Skrjanc et al. [35,36] presented an interval fuzzy
model (INFUMO) to model a class of nonlinear systems with inter-
val parameters. It results in a lower and upper fuzzy model or so
called a fuzzy model with lower and upper parameters. Linear pro-
gramming techniques are used to find the set of lower and upper
parameters using the [._-norm as the optimality criterion. The idea
behind the INFUMO is to find optimal lower and upper bound
fuzzy systems that define a prediction interval which encloses all
the measured input-output data [37]. However, in INFUMO the
lower and upper bound fuzzy models are independent from each
other, and it may incur improper identification results with invalid
lower and upper bounds if there is no enough training data avail-
able in some regions of the input space [36,31].

The motivation of this paper is to construct reliable belief rule-
based (BRB) models for the identification of uncertain nonlinear
systems. The BRB methodology is developed on the basis of the
Dempster-Shafer theory of evidence [14,32], decision theory
[47,16], traditional IF-THEN rule-based systems [18,13,24] and rel-
evant artificial intelligence (Al) techniques [39,22,15]. The BRB
methodology has an inherent capability of dealing with various
types of uncertainty. In a BRB system, various types of information
and knowledge with uncertainties can be represented using belief
structures, and a belief rule is designed with belief degrees embed-
ded in its possible consequents. The belief structure used in both
belief rules and inference processes provides a unified scheme to
model uncertain system outputs caused by vagueness, fuzziness,
or incompleteness, etc. A belief distribution with incompleteness
can be transformed to a prediction interval in a straightforward
way. Compared with traditional rule based systems, BRB systems
provide a more informative knowledge representation scheme
for both quantitative data and qualitative information with
uncertainties, and it is also capable of approximating complicated
nonlinear causal relationships between antecedent inputs and out-
put [45]. In recent years, it has been successfully applied in various
areas, such as fault diagnosis, system identification, forecasting and
decision analysis [45,46,42,3,50,6,48,25].

The rest of the paper is organised as follows. In Section 2, the
BRB methodology for modelling uncertain nonlinear systems is
introduced. In Section 3, a comparative analysis of three identifica-
tion models for uncertain nonlinear systems is presented through
combining the BRB methodology with nonlinear optimisation
techniques. The novel BRB interval identification model using
I.-norm and minimising mean uncertainties in belief rules are

capable of capturing the lower and upper bounds of the interval
outputs of uncertain nonlinear systems simultaneously. Numerical
studies and trade-off analysis are introduced to illustrate the per-
formance of the BRB identification models. In Section 4, a numeri-
cal study is conducted to demonstrate the superior capability of
the proposed BRB identification models for the identification of
uncertain nonlinear systems. The paper is concluded in Section 5.

2. Modelling uncertain nonlinear systems with belief rules

The modelling and identification of an uncertain nonlinear sys-
tem is basically to characterise an unknown relationship between a
set of input variables x = {x;; i=1, ..., M} and a dependent variable
y using a finite number of input-output datasets {x;;y:}, t=1, ..., T,
where y, denotes the measured output at the sampling time t.
Correspondingly a BRB identification model can be described as
the set of input variables and a vector of parameters which are
combined in a nonlinear manner to predict the behaviour of the
dependant variable. The model can be represented by

Ve=f@x;P)+¢e; t=1,....T (1)

where P* is used to denote the optimal values of the set of param-
eters, and ¢, is the model error which is usually assumed to be inde-
pendently and normally distributed. The analytical model f{x;P*) is
decided by model structure, belief rules and inference process
which will be introduced in the following sections.

2.1. Belief rules

To model the uncertain nonlinear relationship between the set
of input variables x and the dependent variable y, a belief rule base
which is made up of a finite number of belief rules can be
constructed. Typically, a belief rule is given in the following form
[45,6].

. k . k : k
IF X1 IS A} AXy IS Ay A=+ A Xy, 1sAMk

N
Rk . THEN{(Dl’ ﬁl,k)v (D27 [;Z,k)v L) (DNﬂ ﬁNAk)}7 (Zﬁmk < 1)
n=1

with rule weight 0,
and weight of variables 61,2y, ..., dm 1.k € {1,...,K},

)

where X;,X,,...,xy, denote the antecedent variable in the kth rule,
and these variables belong to the complete set of input variables
x={x;i=1, ..., M}. Af(i =1,...,M,) is the referential value taken

by the ith antecedent variable in the kth rule and Af-‘ cA;. Ai={Aij;
j=1, ... J;} denotes the set of referential values for the ith anteced-
ent variable and J; is the number of the referential values. As a set of
referential values needs to be defined for each antecedent variable,
and the antecedents in a belief rule is a combination of the referen-
tial values of antecedent variables, a BRB model essentially decom-
poses the input space of an uncertain nonlinear system into
multiple subspaces. The number of referential values on each ante-
cedent variable decides the granularity and interpretability of the
subspaces [7]. Bax(n=1, ..., N; k=1, ..., K) represents the belief
degree to which the consequent element D,, is believed to be the
consequent, given the logical relationship of the kth rule
IF x; is A’]‘ A Xy is A’; A= A Xy iS A,’i,,k. The element D,, in the set of
consequent elements D={D,; n=1, ..., N} can either be a conclu-
sion or an action and a subset of elements can also be part of the
consequent [42]. The nonlinear inference process of BRB models
which will be discussed below is based on the belief distribution
{((DnBni);n=1,..,NLIFSN | B, = 1, the kth rule is said to be com-
plete; otherwise, it is incomplete, and the incomplete belief degree
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