
Algebraic graph transformations for formalizing ontology changes
and evolving ontologies

Mariem Mahfoudh ⇑, Germain Forestier, Laurent Thiry, Michel Hassenforder
MIPS EA 2332, Université de Haute Alsace, 12 rue des Frères Lumière, 68093 Mulhouse, France

a r t i c l e i n f o

Article history:
Received 26 April 2014
Received in revised form 27 August 2014
Accepted 5 October 2014
Available online 14 October 2014

Keywords:
Ontology evolution
Typed Graph Grammars
Algebraic graph transformations
Consistency
AGG

a b s t r a c t

An ontology represents a consensus on the representation of the concepts and axioms of a given domain.
This consensus is often reached through an iterative process, each iteration consisting in modifying the
current version of the consensus. Furthermore, frequent and continuous changes are also occurring when
the represented domain evolves or when new requirements have to be considered. Consequently,
ontologies have to be adaptable to handle evolution, revision and refinement. However, this process is
highly challenging as it is often difficult to understand all affected ontology parts when changes are
performed. Thus, inconsistencies can occur in the ontology as the changes can introduce contradictory
axioms. To address this issue, this paper presents a formal approach for evolving ontologies using
Typed Graph Grammars. This method relies on the algebraic approach Simple PushOut (SPO) of graph
transformations. It formalizes the ontology changes and proposes an a priori approach of inconsistencies
resolution. The modified ontology does not need an explicit checking as an incorrect ontology version
cannot actually be generated. To validate our proposal, an implementation is presented using the
Attributed Graph Grammar (AGG) toolbox.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Formalizing knowledge has always presented an existential
obsession and an important challenge for humans. The proposed
solutions in the literature are mainly organized around databases,
data warehouses and more recently ontologies. Ontologies are
often defined as an explicit specification of a conceptualization of a
domain [1]. They make possible for a community to reach a consen-
sus and to bridge the gap of the vocabulary heterogeneity and
semantic ambiguities. Thanks to their advantages, ontologies are
used in a large range of fields such as: semantic web [2], business
decision support [3], image interpretation [4], peer-to-peer
networks [5], etc. A counterpart of this popularity, is the constant
augmentation of available ontologies. For example, the number
of ontologies on the BioPortal increased of 67% in 2013.1

Furthermore, as building an ontology is an iterative process [6,7],
the creation of a new ontology actually creates a set of several
ontologies versions which is also consistently growing. For example,
51 versions of the Gene Ontology (one of the most successfully

ontologies) are monthly released since January 2010.2 Thus, more
and more new ontologies are created and the number of versions
of existing ontologies is constantly increasing.

Generate a new ontology version is however not a trivial task. It
presents several challenges and requires a comprehensive study of
the ontology model in order to manage its evolution. Ontologies
Evolution is defined by Stojanovic et al. as the timely adaptation of
an ontology to the arisen changes and the consistent propagation of
these changes to dependent artefacts [8]. This process consists in
the modification of one or many ontology components (class,
property, axiom, individual, etc.) and it may be at instances level
(Ontology Population) and/or structural level (Ontology Enrichment)
[9]. Moreover, to preserve ontology consistency, the application of
ontology changes must preserve all the ontology model constraints
[8]. However, ontologies are often developed in a collaborative
manner and are usually large and expressive. This makes difficult
for a user and/or ontologist to understand all their affected parts
(i.e. dependent entities) when changes are made. Therefore, to
keep ontology consistency, it is important to have a mechanism
that controls how the ontology changes are made and avoids the
possible inconsistencies generated due to these changes.

http://dx.doi.org/10.1016/j.knosys.2014.10.007
0950-7051/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +33 (0)0389336960.
E-mail addresses: mariem.mahfoudh@uha.fr (M. Mahfoudh), germain.forest-

ier@uha.fr (G. Forestier), laurent.thiry@uha.fr (L. Thiry), michel.hassenforder@uha.fr
(M. Hassenforder).

1 bioportal.bioontology.org/ontologies.

2 geneontology.org/ontology-archive.

Knowledge-Based Systems 73 (2015) 212–226

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2014.10.007&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2014.10.007
mailto:mariem.mahfoudh@uha.fr
mailto:germain.forestier@uha.fr
mailto:germain.forestier@uha.fr
mailto:laurent.thiry@uha.fr
mailto:michel.hassenforder@uha.fr
http://dx.doi.org/10.1016/j.knosys.2014.10.007
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


The ontology languages such as Ontology Web Language (OWL3)
are prevalent in knowledge representation, although, they are not
sufficient for formalizing changes. They are indeed effective to cap-
ture static semantics but not changes that require a consistency
checking of the interaction between ontologies entities. That is why,
the proposed approaches in the literature do not addressed the incon-
sistencies issue [10] or used ana posterioriprocess to identify inconsis-
tencies [11–13], etc. Thus, unlike previous approaches, this paper
focuses on the critical issue of presenting a formal approach for con-
sistent ontologies evolution by using Typed Graph Grammars and
Algebraic Graph Transformations. Typed Graph Grammars (TGG)
are a mathematical formalism that permits to represent and manage
graphs. They are used in several fields of computer science such as
software systems modeling, pattern recognition and formal language
theory [14]. Recently, they started to be used in the ontology field, in
particular for the modular ontologies formalization [15], Resource
Description Framework graphs representation [16], collaborative
ontologies evolution [17] and consistent ontologies evolution [18].

In our previous work [18], we have introduced the formaliza-
tion of the ontology changes with Typed Graph Grammars and
have focused on the atomic changes. A deeper study is presented
in this paper which presents an exhaustive list of the atomic ontol-
ogy changes and describes how consistently formalize the compos-
ite and complex changes. A comparison between the ontology
changes representation in the OWL and our TGG formalism is pre-
sented to highlight the advantages of the use of graph grammars in
the ontologies evolution process. Indeed, TGG and algebraic graph
transformations provide a new way to formalize ontology changes
and offer mechanisms to control graph transformations while
avoiding the inconsistencies. Furthermore, they can reduce the
number of elementary changes required to apply the composite
and complex changes. The proposed approach has been
implemented using a graph transformation tool Attributed Graph
Grammar (AGG). In addition, we also present a mechanism to log
the ontologies versions and ontology changes with a formal
representation. An application is presented with the EventCCAlps
ontology developed in the frame of the CCAlps European project.4

The rest of the paper is organized as follow: Section 2 presents
related work and introduces Typed Graph Grammars and algebraic
graph transformations. Section 3 proposes a graph transformation
model for evolving ontologies and describes the formalization of
ontology changes with Typed Graph Grammars. Section 4 presents
an application using the EventCCAlps ontology. Section 5 evaluates
and discusses the proposed approach. Finally, a conclusion
summarizes the presented work and gives some perspectives.

2. Background and review

2.1. Related work

Managing ontologies evolution has been an important and
active field of research in the recent years [9]. The approach of Sto-
janovic et al. [19] is considered as one of the first works that have
addressed this issue. It presents a methodology in six phases:
change capturing, change representation, semantics of change,
change implementation, change propagation and change valida-
tion. The approach focuses on the KAON ontologies and identifies
three types of ontology changes: (1) atomic change is an ontology
change that affects a single ontology entity; (2) composite change
is an ontology change that modifies the neighborhood of an ontol-
ogy entity; (3) complex change is an ontology change that can be
decomposed into elementary and composite ontology changes.
Later, Klein et al. [11] have proposed another classification. They

distinguish two types of ontology changes: elementary (atomic) and
composite (complex). These changes can be specified via logging
of incremental changes or by ontology versions comparison. The
authors have also studied the problem of inconsistencies ontologies
and proposed strategies resolution for each ontology changes.
However, it is important to note that, the work is focused on the
‘‘ontology enrichment’’ and do not specify specific operations for
the instances. Then, Luong et al. [20] have addressed both the
‘‘ontology enrichment’’ and the ‘‘ontology population’’. They have
studied the evolution management for a corporate semantic web
while addressing the RDF5 (Resource Description Framework) ontol-
ogies. This choice restricts the expressivity of the methodology as the
others ontology languages (such as OWL) require further types of
changes (cardinality changes, restrictions on the classes, etc.). Thus,
Djedidi et al. [12] have proposed an approach of OWL ontologies
evolution based on pattern conception. They have studied both the
atomic and composite changes and have used the Pellet reasoner
[21] to detect the inconsistencies. A deeper study of the composite
changes is introduced by Javed et al. [22]. It has presented resolution
strategies for several composite changes and has described a layered
change log for the explicit operational representation of ontology
changes. The change log is formalized using a graph-based approach
and implemented by OWLAPI.6 To identify ontologies inconsisten-
cies, Gueffaz et al. [23] have proposed CLOCk (Change Log Ontology
Checker) approach which use model checking. A transformation of
the OWL ontologies into a specific language NuSMV7 is needed.
However, no strategies are proposed to solve the inconsistencies.
Recently, some researches are interested to look for new formalisms
to represent ontologies and find others alternatives to the standard
ontology languages. Then, Liu et al. [24] have introduced SetPi calcu-
lus [25] to model ontologies evolution process. They have represented
ontologies by using SetPi entities and have defined a new formalism
for describing the ontology changes. The work presents many ontol-
ogy changes (basic and composite). However, it does not study the
inconsistencies problem and do not proposes any implementation.

As a summary, various approaches have been proposed to
define and implement ontology evolution process. The Table 1 pre-
sents a comparison of some approaches according to the languages
used, the implementation, the inconsistency management and the
specificities. Thus, we can see that different ontology languages
have been studied: KAON [8], RDF [20], OWL [11,12,22], etc. Based
on these languages, several ontology changes were defined and dif-
ferent classifications of theses changes were proposed [8,11].
Despite its importance, the problem of inconsistencies resolution
is not sufficiently studied. Indeed, some works do not address this
issue [10,24]. Others approaches are only focused on the inconsis-
tencies identification [23]. Some researches are interested, in addi-
tion, to resolve the inconsistencies [12,20,22]. However, they usea
posterioriprocess of inconsistencies resolution which require the
implementation of changes and then, use external resources to
check if the ontology consistency is affected or not. In our work,
we propose an a priori approach to avoid inconsistencies by using
Typed Graph Grammars formalism.

2.2. Typed Graph Grammars

This section reviews the fundamental notions involved in Typed
Graph Grammars and algebraic graph transformations.

Definition 1 (Graph). A graph GðV ; EÞ is a structure composed by a
set of vertices V, a set of edges E and an application s : E! V � V
that attaches a source/target vertex to each edge.

3 w3.org/TR/owl-ref.
4 ccalps.eu, project reference number: 15-3-1-IT.

5 w3.org/RDF.
6 owlapi.sourceforge.net.
7 nusmv.fbk.eu.

M. Mahfoudh et al. / Knowledge-Based Systems 73 (2015) 212–226 213



Download English Version:

https://daneshyari.com/en/article/404979

Download Persian Version:

https://daneshyari.com/article/404979

Daneshyari.com

https://daneshyari.com/en/article/404979
https://daneshyari.com/article/404979
https://daneshyari.com

