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a b s t r a c t

In this paper, we formulate a twin-type support vector machine for large-scale classification problems,
called weighted linear loss twin support vector machine (WLTSVM). By introducing the weighted linear
loss, our WLTSVM only needs to solve simple linear equations with lower computational cost, and mean-
while, maintains the generalization ability. So, it is able to deal with large-scale problems efficiently with-
out any extra external optimizers. The experimental results on several benchmark datasets indicate that,
comparing to TWSVM, our WLTSVM has comparable classification accuracy but with less computational
time.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Traditional support vector machines (SVMs) [5,3,6] such as C-
SVC [3] and m-SVC [32], have already reached many achievements
in supervised machine learning [20,15,45,43]. However, their
training stage involves solving a quadratic programming problem
(QPP) with rather high computational complexity Oðm3Þ, where
m is the total size of training data points. This drawback restricts
the application of SVM to large-scale problems. There are two ways
to address this problem. One aims at solving the QPP in the tradi-
tional SVMs more efficiently, e.g. Chunking [42], SMO [24], SVM-
Light [12], LIBSVM [4], and LIBLINEAR [8]. The other one aims at
establishing new model and finding simpler problem to replace
the QPP, e.g. Proximal SVM [9] and Least Squares SVM [39,38],
where the QPP is replaced by a linear system of equations since
the squared loss function instead of the hinge one is introduced.

It should be mentioned that in the second way there is an inter-
esting approach where two non-parallel hyperplanes are con-
structed, rather than constructing two parallel supporting
hyperplanes in traditional SVMs. It goes back to generalized eigen-
value proximal support vector machine (GEPSVM) [16] which
needs to solve generalized eigenvalue problems. Subsequently,
the twin support vector machine (TWSVM) [11] is proposed.

Different from GEPSVM, TWSVM solves two small related QPPs.
Due to its strong generalization ability [13,33], TWSVM and its
variants have been studied extensively [25,23,18,41,40,28,29,27].
Specifically, least squares type TWSVM (LSTSVM) [1] has been pre-
sented by using the squared loss function instead of the hinge one
in TWSVM, leading to very fast training speed since two QPPs are
replaced by two systems of linear equations. However, it has been
pointed out in [1] that LSTSVM relaxes the constraint ‘‘the other
class as far as possible from the hyperplane’’ to ‘‘the other class
has a distance from the hyperplane’’, which may result in the
reduction of classification ability, and meanwhile, the characteris-
tic of constructing two non-parallel hyperplanes in TWSVM may
also be weakened [18].

In this paper, we propose a twin-type support vector machine
with weighted linear loss function, called weighted linear loss twin
support vector machine (WLTSVM). Following TWSVM, the linear
version of our WLTSVM constructs two non-parallel hyperplanes
such that each hyperplane is proximal to one class and as far as
possible from the other class. However, different from TWSVM,
in the linear version of our WLTSVM, a weighted linear loss func-
tion is introduced. The main cost of our WLTSVM is solving two
systems of linear equations that are much simpler than that of
TWSVM, where two QPPs are needed to be solved. Besides, distinct
from LSTSVM, our WLTSVM keeps the more reasonable constraint
‘‘the other class as far as possible from the hyperplane’’ in TWSVM.
In fact, theoretical analysis shows that our WLTSVM not only
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maintains the merits of the TWSVM but also has lower computa-
tional cost. Furthermore, the two systems of linear equations in
our WLTSVM can be solved efficiently by using the well-known
conjugate gradient algorithm, resulting in the ability to deal with
large-scale datasets without any extra external optimizers. It
should be pointed out that our WLTSVM including its linear ver-
sion and nonlinear version have been extended to multiple classi-
fication problems. Comparing to TWSVM [11,34], LSTSVM [1],
NHSVM [35], GEPSVM [16], SVM, and LSSVM, the preliminary
numerical experiments on several benchmark datasets show that
our WLTSVM gains comparable generalization ability but with
remarkable less training time.

This paper is organized as follows. In Section 2, a brief review
and the discussion on SVM, LSSVM, TWSVM, and LSTSVM are
given. Our WLTSVM is formulated in Section 3. And the numerical
experiments are described in Section 4. Finally, Section 5 gives the
conclusion.

2. Background

In this section, we consider the following binary classification
problem with the training set T ¼ fðx1; y1Þ; ðx2; y2Þ; . . . ; ðxm; ymÞg,
where xi 2 Rn are inputs and yi 2 fþ1;�1g are corresponding out-
puts. Further, suppose that all of the data points in class þ1 are
denoted by a matrix A 2 Rm1�n, where the i-th row Ai 2 Rn repre-
sents the i-th data point. Similarly, the matrix B 2 Rm2�n represents
the data points of class �1; m�m1 ¼ m2. We now give a brief out-
line of SVM related methods.

2.1. Support vector machine

Linear support vector machine [5,6] searches for a separating
hyperplane

f ðxÞ ¼ w>xþ b ¼ 0; ð1Þ

where w 2 Rn and b 2 R. To measure the empirical risk, the soft mar-
gin loss function

RSþ þ RS� ¼ e>2 maxð0; e2 þ Bwþ e2bÞ þ e>1 maxð0; e1 � Aw

� e1bÞ ð2Þ

is used, where e1 and e2 are vectors of all 1’s of adequate size.
By introducing the regularization term 1

2 kwk
2 and the slack vari-

ables n1 ¼ ðn1; . . . ; nm1
Þ and n2 ¼ ðn1; . . . ; nm2

Þ, the primal problem of
SVM can be expressed as

min
w;b;n1 ;n2

1
2
jjwjj2 þ C e>1 n1 þ e>2 n2

� �
s:t: Awþ e1b P e1 � n1; n1 P 0;

� ðBwþ e2bÞP e2 � n2; n2 P 0;

ð3Þ

where C > 0 is a parameter. Note that the minimization of the reg-
ularization term 1

2 kwk
2 is equivalent to the maximization of the

margin between two parallel supporting hyperplanes w>xþ b ¼ 1
and w>xþ b ¼ �1, and the structural risk minimization principle
is implemented in this problem. Fig. 1(a) shows the geometric inter-
pretation of this formulation for a toy example. After we obtain the
optimal solution of (3), a new data point is classified as þ1 or �1
according to whether the decision function, Classi ¼ sgnðw>xþ bÞ,
yields 1 or �1 respectively.

2.2. Least squares SVM

Similar to SVM, linear least squares support vector machine
(LSSVM) [39,38] also searches for a separating hyperplane (1). To

measure the empirical risk, instead of applying the soft margin loss
function, the quadratic loss function

RLSþ þ RLS� ¼
1
2
ke1 � Aw� e1bk2 þ 1

2
ke2 þ Bwþ e2bk2 ð4Þ

is used in LSSVM. By introducing the regularization term 1
2 kwk

2 and
the slack variables n1 and n2, the primal problem of LSSVM can be
expressed as

min
w;b;n1 ;n2

1
2
jjwjj2 þ C n>1 n1 þ n>2 n2

� �
s:t: e1 � Aw� e1b ¼ n1;

e2 þ Bwþ e2b ¼ n2;

ð5Þ

where C > 0 is a parameter. Similar to SVM, the minimization of the
regularization term 1

2 kwk
2 is equivalent to the maximization of the

margin between two parallel proximal hyperplanes w>xþ b ¼ 1
and w>xþ b ¼ �1. When we obtain the optimal solution of (5), a
new data point is classified as þ1 or �1 according to whether the
decision function, Classi ¼ sgnðw>xþ bÞ, yields 1 or �1 respectively.

2.3. Twin support vector machine

Different from SVM, linear twin support vector machine
(TWSVM) [11,34] seeks a pair of non-parallel hyperplanes

f 1ðxÞ ¼ w>1 xþ b1 ¼ 0 and f 2ðxÞ ¼ w>2 xþ b2 ¼ 0; ð6Þ

such that each hyperplane is proximal to data points of one class
and as far as possible from the data points of the other class, where
w1 2 Rn; w2 2 Rn; b1 2 R and b2 2 R. Here the empirical risks are
measured by

RT1þ þ c1RT1� ¼
1
2
kAw1 þ e1b1k2 þ c1e>2 maxð0; e2 þ Bw1 þ e2b1Þ

ð7Þ
and

RT2� þ c2RT2þ ¼
1
2
kBw2 þ e2b2k2 þ c2e>1 maxð0; e1 � Aw2 � e1b2Þ;

ð8Þ

where c1 > 0 and c2 > 0 are parameters. By introducing the slack
variables n1; n2; g1 and g2, the primal problems are expressed as

min
w1 ;b1 ;n1 ;n2

1
2

n>1 n1 þ c1e>2 n2

s:t: Aw1 þ e1b1 ¼ n1;

� ðBw1 þ e2b1Þ þ n2 P e2; n2 P 0;

ð9Þ

and

min
w2 ;b2 ;g1 ;g1

1
2
g>2 g2 þ c2e>1 g1

s:t: Bw2 þ e2b2 ¼ g2;

ðAw2 þ e1b2Þ þ g1 P e1; g1 P 0:

ð10Þ

Fig. 1(b) shows the geometric interpretation of this formulation
for a toy example. The corresponding dual problems are

max
a

e>2 a� 1
2
a>GðH>HÞ�1

G>a

s:t: 0 6 a 6 c1e2;

ð11Þ

and

max
c

e>1 c� 1
2
c>HðG>GÞ�1

H>c

s:t: 0 6 c 6 c2e1;

ð12Þ

where G ¼ ½B e2� and H ¼ ½A e1�. In order to deal with the case
when H>H or G>G is singular and avoid the possible ill-conditioning,
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