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Background: In this paper we review applications of continuous relative phase and commonly reported methods
for calculating the phase angle. Signals with known properties as well as empirical data were used to compare
methods for calculating the phase angle.
Findings: Our results suggest that the most valid, robust and intuitive results are obtained from the following
steps: 1) centering the amplitude of the original signals around zero, 2) creating analytic signals from the original
signals using the Hilbert transform, 3) calculating the phase angle using the analytic signal and 4) calculating the
continuous relative phase.
Interpretations: The resulting continuous relative phase values are free of frequency artifacts, a problem associat-
edwithmost normalization techniques, and the interpretation remains intuitive.We propose thesemethods for
future research using continuous relative phase in studies and analyses of human movement coordination.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Within sports and health science, the biomechanical study of human
movement has many purposes; these include, but are not limited to,
rehabilitation, injury prevention and sports performance analysis. A
common challenge for all of these domains is simplifying the high-
dimensional information available from 2D video analysis, 3D motion
capture systems or othermodes of kinematic data collection. Dynamical
systems theory approaches tomovement analysis have gained support in
recent years because it provides a theoretical framework for simplifying
and working with complex systems (see, e.g. (Kelso, 1995)). Dynamical
systems can be composed of many parts interacting and their behavior
may often be described by a single low-dimensional term or measure.
Most human movements involve a great number of moving parts, all
coordinated together, explainingwhy somany researchers and clinicians
have put such effort into modeling the human movement system as a
dynamical system (e.g. (Davids et al., 2003; Glazier and Davids, 2009;
Stergiou, 2004)). For example, in locomotion the lower extremity
segments can be treated as a coupled system and the interaction of the
segments acts to effectively displace the body's position during locomo-
tion. By treating the musculoskeletal system as a system evolving over
time, rather than focusing on particular events, amuch richer description

of the interaction of the individual and his environment can be achieved
(Barela et al., 2000).

Rosen (1970) is often cited for suggesting that the behavior of a
dynamical system can be described by plotting a variable versus its
first derivative — these plots are commonly called phase portraits and
provide qualitative utility in analyzing human movement (Bartlett and
Bussey, 2012; Beek and Beek, 1988). According to (Clark et al., 1993),
the phase portraits of the shank and thigh are similar to a limit cycle
system— their coordination is cyclic and dissipative and therefore energy
must be supplied to continue the behavior. Accordingly, their relation in
phase space, or relative phase, can describe the dynamic coordination of
these variables. Continuous relative phase is ameasure,which describes
the phase space relation between two segments (modeled as pendula)
as it evolves throughout the movement, which makes continuous
relative phase an attractive and popular collective variable for inter-
and intra-limb coordination.

A central goal in dynamical systems theory is to identify the
attractors, or stable states, of the system. Identifying stable states goes
beyond simply identifying the common coordinative states for a partic-
ular movement; analysis of the variability of continuous relative phase
allows one to investigate the stability of the system, or its resiliency to
perturbation. Kelso (1995) noted that when coordination is perturbed
beyond stability the relative phase pattern will fluctuate, indicated
by an increase in variability, before settling on a new stable pattern.
Analyses of the variability of continuous relative phase are insightful
tools for understanding the dynamics of higher order coordination.
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Therefore, the importance of a valid, robust method for calculating
phase angles, to be sure that the signal of interest is measured with-
out contamination from frequency artifacts, should be clear and will
be addressed in this paper.

Both the wide ranging applications of continuous relative phase as
well as the varying methods used in its calculation warrant an in-depth
overview and discussion of its application, calculation and interpretation.
This paper provides an overview of the use of continuous relative phase
in sport and health science before comparing the approaches that have
been taken in the literature for its calculation.Wedemonstrate the prom-
inent procedures in the literature using synthetic and empirical data and
outline what we suggest to be the newmethodological standard for con-
tinuous relative phase in sports and health science.

2. Calculating continuous relative phase

Continuous relative phase is a new signal generated representing
the difference in phase angles of the two original signals. For the calcu-
lation of phase angles two differentmethods have commonly been used
in studies of human movement. Firstly, continuous relative phase
between two signals can be calculated based on phase portraits
(Burgess-Limerick et al., 1993; Hamill et al., 1999) and, secondly, rela-
tive phase between two signals can be calculated using analytic signals
generated by the Hilbert transform (Lamoth et al., 2009; Palut and
Zanone, 2005). In the following two subsections we describe these
methods in detail.

2.1. Phase portraits

Studies of human movement coordination are often grounded in
dynamical systems theory; therefore, system components can be
assigned to a phase space in which each state of the dynamical system
is described by certain properties. Pertaining to continuous relative
phase analyses, the phase space usually consists of the measured
(time dependent) signal x(t) and its velocityẋ tð Þ, the first derivative of
the signal. The measured signal used in phase portraits is most often a
segment or joint angle, although others have used higher derivatives
to construct the phase space (Wagenaar and van Emmerik, 2000). To
calculate the phase angle, frequency effects of the phase portrait on
the phase angle are reduced by normalization methods.

Before introducing normalization methods we should first distin-
guish between analyzing sinusoidal signals and non-sinusoidal signals.
Sinusoidal (harmonic) signals are signals which can mathematically
be described by a sine wave, for example, the signal

x tð Þ ¼ A sin ωt þ ψð Þ þ d ð1Þ

where ω denotes the frequency, ψ denotes a constant shift along the
x-axis, A is a constant describing the magnitude of the amplitude,
and d is a constant which describes a shift along the y-axis. Non-
sinusoidal (non-harmonic) signals are those which cannot be mathe-
matically described by only a sine wave (such as in Eq. (1)). For each
of these types of signals there are some commonly used normalization
techniques.

In order to analyze a sinusoidal signal, Fuchs et al. (1996) showed
that thephase portrait should benormalized so that the resulting trajec-
tory in phase space is circular and centered around the origin of the
phase space. To achieve the circularity they showed that theẋ tð Þ axis of
the signals should be normalized by multiplying the ẋ tð Þ axis by the
factor 1

ω: the inverse of the signal's frequency. Furthermore, in case a
sinusoidal oscillator is described by Eq. (1) with d ≠ 0 the oscillator
must be shifted by −d, so that the phase portrait is centered around
the origin of the xẋphase space. This ensures that phase portraits of dif-
ferent sinusoidal signals x1(t) and x2(t) are comparable and hence avoid
artifacts caused by frequencies and/or different shifts d1 and d2. To

calculate phase angles, the displacement of sinusoidal data does not
need to be normalized because the phase angle ϕ of a sinusoidal oscilla-
tor (for simplicity we assume d= 0) does not influence the calculation
of ϕ

ϕ ¼ arctan
ẋ tð Þ
x tð Þ
� �

¼ arctan
ω A cos ω t þ ψð Þ
A sin ω t þ ψð Þ

� �
¼ arctan

ω cos ω t þ ψð Þ
sin ω t þ ψð Þ

� �
:

ð2Þ

To analyze non-sinusoidal signals, different normalization methods
have been used. The goal of normalizing the data has been to transform
the phase portraits in such a way that both displacement of the signal
and its first derivative are limited to the range between −1 and 1. In
this paper we used the two most frequently used methods (similar to
those reported by (Kurz and Stergiou, 2002)). First, normalization is
accomplished for any input signal y(t) by the function

f y tið Þð Þ ¼ y tið Þ
max y tð Þj jð Þ ð3Þ

This technique limits the input signal of the function to either−1 or
1 depending on the maximum absolute value of y(t). This method is
often used for velocity normalization because the zero value has quali-
tative meaning and, arguably, should be preserved. In other words,
after normalization the zero value represents the zero value in the orig-
inal signal. A second normalization technique is based on the function

g y tið Þð Þ ¼ 2
y tið Þ−min y tð Þð Þ

max y tð Þð Þ−min y tð Þð Þ
� �

−1 ð4Þ

This function transforms the original values y(t) in such a way that
the minimum value of g(y(t)) equals −1 and the maximum value of
g(y(t)) equals 1. Here the zero value is midway between the maximum
and minimum and can, therefore, be arbitrary. Since angle definitions
can be arbitrary, the method in Eq. (4) has often been used for normal-
izing joint or segment angles. We summarize the normalization
methods found in the literature as follows:

• Method A uses Eq. (4) to normalize the joint angular displacement and
Eq. (3) to normalize the angular velocities (Barela et al., 2000;
Burgess-Limerick et al., 1993; Dierks and Davis, 2007; Hamill et al.,
1999; Heiderscheit et al., 1999; Hein et al., 2012; Li et al., 1999; Miller
et al., 2008, 2010; Stergiou et al., 2001a,b; Yen et al., 2009).

• MethodBuses Eq. (4) for both angular displacement and angular veloc-
ity normalization (Figueiredo et al., 2012; Haddad et al., 2010; Kwakkel
and Wagenaar, 2002; Lamoth et al., 2002; Meyns et al., 2013; Selles
et al., 2001; van Emmerik and Wagenaar, 1996).

After normalization, the phase angle of the signal at time ti is calcu-
lated based on the normalized phase portrait (Barela et al., 2000; Li
et al., 1999; Peters et al., 2003)

ϕ tið Þ ¼ arctan
ẋnorm tið Þ
xnorm tið Þ
� �

ð5Þ

Finally, the continuous relative phase, crp(ti), at time ti between two
signals x1(t) and x2(t) is calculated as

crp tið Þ ¼ ϕ1 tið Þ−ϕ2 tið Þ
¼ arctan

ẋ1;norm tið Þx2;norm tið Þ−ẋ2;norm tið Þx1;norm tið Þ
x1;norm tið Þx2;norm tið Þ þẋ1;norm tið Þẋ2;norm tið Þ

 !
:

ð6Þ
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