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a b s t r a c t

Subclass discriminant analysis (SDA) is a recently developed dimensionality reduction technique which
takes into consideration the intrinsic structure information lurking in data by approximating unknown
distribution of each class with multiple Gaussian distributions, namely, subclasses. However, in SDA,
the separability between heterogeneous subclasses, i.e. those from different classes, is measured by
the between-subclass scatter calculated as average distance between the means of these subclasses. In
this paper, in the view of maximum margin principle, we propose a novel feature extraction method
coined structural max-margin discriminant analysis (SMDA), in order to enhance the performance of
SDA. Specifically, SMDA targets at finding an orthogonal linear embedded subspace in which the margin,
defined as the minimum pairwise between-subclasses distance, is maximized and simultaneously the
within-subclasses scatter is minimized. The concrete formulation of the resulting model boils down to
a nonconvex optimization problem that can be solved by combining the constrained concave–convex
procedure with the column generation technique. We evaluate the proposed SMDA on several bench-
mark datasets and the experimental results confirm the effectiveness of the proposed method.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In exploratory data analysis problems, most of real-world data
have a large number of input variables, many of which are noisy
and filling with redundant information. As a promising way to
reduce the number of variables, and thus the dimensionality of
problems, feature extraction has become a crucial preprocessing
step to analyze these data for two reasons. First, the storage
requirement and computational cost for the subsequent machine
learning tasks such as classification and visualization, will be cut
down remarkably on the refined data. Second, the generalization
ability of learning algorithms can be vastly improved due to the
removal of noisy or irrelevant features. A category of popular and
widely used feature extraction approach known as subspace learn-
ing aims at seeking a low-dimensional feature space in which the
projected data can be well reconstructed or separated according
to the specific purpose.

Principle component analysis (PCA) [1], multidimensional scal-
ing (MDS) [2] and linear discriminant analysis (LDA) [3] are three
representative subspace learning methods. PCA tries to find an
orthonormal subspace in such a way that the projected data result
in the largest variance. MDS attempts to find low-dimensional

embeddings of data which preserve the pairwise distance between
original data as accurately as possible. Actually, PCA can be viewed
as a special case of MDS when the Euclidean distance is used. How-
ever, PCA and MDS fail to incorporate the available supervised
information into their learning algorithms, thus may lead to poor
classification performance. On the contrary to PCA and MDS, LDA
exploits the class label information to find a subspace best discrim-
inating different classes. This is achieved by maximizing the Fisher
criterion, that is, the ratio of between-class scatter to within-class
scatter. Therefore, it is generally believed that the features
extracted by LDA are more reliable than those captured by PCA
in pattern classification scenarios [3].

As is well-known, the subspace derived from LDA is optimal for
binary-class problems in the sense that the Bayes error reaches its
minimum as long as each class follows multivariate normal distri-
butions having a common covariance matrix but different class
means [4]. This assumption, however, is too strict to satisfy in
many real-world applications because the data often own certain
inherent structure which can described by neither within-class
nor between-class scatter matrices. For instance, when the under-
lying data within each class are multimodally distributed, LDA may
suffer severely due to the violation of above assumption. During
the last decades, many extensions to the basic LDA have been pro-
posed to cope with this limitation. A popular and widely used
approach is reformulating the within-class and between-class
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scatter matrices such that as much prior structure information as
possible can be incorporated into the framework of LDA. Generally
speaking, the possible ways to discover inner-structure of data can
be divided into two categories: manifold-based and subclass-based
approaches.

Manifold-based approaches tries to discover local geometric
structure, the researchers have developed many manifold learning
algorithms for dimensionality reduction, including locally linear
embedding (LLE) [5], ISOMAP [6], etc. Unfortunately, these meth-
ods cannot yield an explicit mapping function from the original
samples to their low-dimensional representations, thus making
them cannot be applied to the samples which are not in the train-
ing set. He et al. utilized a linearization procedure and proposed
locality preserving projection (LPP) [7] which can build explicit
mapping between the input space and the reduced space. Some
other methods using similar idea also have been developed [8,9].
However, LPP and those related methods only attempt to preserve
local neighborhood relationship without considering the valuable
class label information. Consequently, similar to PCA, the features
they produce may not be reliable enough in terms of pattern clas-
sification due to the fact that the embeddings of inter-class neigh-
bors may congregate in the reduced space. To preserve local
geometric structure of the data and simultaneously exploit class
information, a lot of discriminant manifold learning approaches
have been proposed [10–15], most of which can be characterized
by the graph embedding framework [10]. Among these methods,
a representative one is coined as local fisher discriminant analysis
(LFDA) [13] which combines the ideas derived from LDA and LPP.
Through taking into consideration the local information of data
which is often characterized by K nearest neighbor relations, LFDA
replaces traditional within-class and between-class scatter matri-
ces used in LDA with their weighted counterparts. Consequently,
LFDA is capable of revealing the within-class multimodal struc-
tures, thus becoming a useful tool for extracting features from mul-
timodal data.

Another promising approach exploiting structure information is
to take into consideration the underlying cluster structure lurking
in data [16]. The most representative method is the recently devel-
oped subclass discriminant analysis (SDA) [17]. By relaxing the
assumption that the data inside each class form a single compact
cluster, SDA regards each class can include multiple clusters, where
each one can be fitted or approximated by a single Gaussian distri-
bution. Under such an assumption, the clustering technique is first
conducted to partition each class into several subclasses while the
resulting cluster structure information is then incorporated into
the formulation of LDA through maximizing the average distance
between the clusters from different classes and at the same time
minimizing the scatter within each cluster. It leads to a similar for-
mulation as LDA and the solution can be calculated by solving a
generalized eigenvalue problem. Owing to its advantages, SDA
has attracted much attention and several extensions have been
developed, such as subclass support vector machine [18], sub-
class-based nonnegative matrix factorization [19] and so forth. It
should be pointed out that integrating the cluster structure infor-
mation into traditional pattern classification algorithms, e.g.
SVM, have drawn much attention and some extended algorithms
have been developed [20–22]. Generally, most of the feature
extraction methods, including PCA, LDA, LFDA, SDA, etc., calculate
the discriminant vectors by solving their respective associated gen-
eralized eigenvalue problems.

Some recent works [23,24] have demonstrated that the use of
margin characterizing the separability between different classes
can effectively improve the performance of feature extraction
methods. In contrast to conventional between-class scatter repre-
senting the average distance between different classes, margin
often takes on more discriminant information since it concentrates

on the minimum distance between different classes [25,26]. To this
end, it is expected that maximizing the margin rather than the
between-class scatter can produce the projection direction with
better discriminability. In addition, the solution of these methods
generally follows from solving a related mathematical program-
ming problem instead of traditional generalized eigenvalue prob-
lem. It is worth noting that the margin-based feature extraction
algorithms mentioned above are all developed under the frame-
work of LDA, thus ignoring the inherent structure information con-
tained in each class. Therefore, developing feature extraction
algorithms which can jointly explore the merits of structure infor-
mation lurking in data and maximum margin principle is an
important problem worthy of study.

Inspired from the above discussion concerning the idea of max-
imum margin, we propose in this paper a novel feature extraction
method, referred to as structural max-margin discriminant analy-
sis (SMDA) to improve SDA [25–28,40,41]. The central idea of
SMDA is to seek an orthogonal subspace that maximizes the mar-
gin defined as the minimum pairwise distance between clusters (or
subclasses) from different classes, while minimizing the total
within-cluster scatter. In such a way, the features extracted by
SMDA are expected to yield robust performance. It is interesting
of our method from the following perspectives:

(1) Different from original SDA [17] which employs the sum of
between-cluster distances to characterize the between-clus-
ter separability, our formulation originates from maximum
margin principle to guarantee heterogeneous clusters can
be well-separated in the reduced subspace.

(2) Different from the methods [23,24] incorporating maximum
margin principle, our method takes full account of the
intrinsic structure information lurking in each class. Using
such kind of information as much as possible is proved to
be an effective approach for improving generalization per-
formance [20–22].

(3) An efficient algorithm is developed to solve the nonconvex
optimization problem involved in SMDA. On the basis of
constrained concave–convex procedure (CCCP) [35], the ori-
ginal problem is converted into a series of convex quadratic
programming (QP) problems, each of which can be solved by
resorting to the column generation technique [36–38].

(4) Extensive comparisons are made on both artificial and
benchmark datasets. The results verify the advantage of
SMDA in comparison with other related algorithms.

The rest of this paper is organized as follows. Section 2 briefly
reviews the formulation of SDA. Section 3 first introduces the pro-
posed SMDA on the basis of maximum margin principle and then
derives a related algorithm. Section 4 reports the experimental
results on many datasets. Finally, Section 5 contains some conclud-
ing remarks and future works.

2. Brief review of SDA

Suppose we are given a set of D-dimensional input samples
X = {x1, x2, . . . , xL} from K known pattern classes. The Li samples in
class i are denoted by Xi, i.e. |Xi| = Li,

PK
i¼1Li ¼ L. The main purpose

of discriminant feature extraction is to find a low-dimensional sub-
space where the samples from different classes can be well sepa-
rated. Subclass discriminant analysis (SDA) first employs a
clustering procedure to derive a subclass division of each class,
and then incorporates such structure information into the LDA cri-
terion. More specifically, suppose the samples in class i are parti-
tioned into Hi disjoint clusters by using clustering methods, i.e.,
Xi ¼ Xi1 [ Xi2 [ � � � [ XiHi

, Xij \ Xik = U, "j – k where Xij denotes the
j-th cluster in class i, i = 1, 2, . . . , K, j = 1, 2, . . . , Hi. Let |Xij| be the
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