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a b s t r a c t

In the case of real-valued inputs, averaging aggregation functions have been studied extensively with
results arising in fields including probability and statistics, fuzzy decision-making, and various sciences.
Although much of the behavior of aggregation functions when combining standard fuzzy membership
values is well established, extensions to interval-valued fuzzy sets, hesitant fuzzy sets, and other new
domains pose a number of difficulties. The aggregation of non-convex or discontinuous intervals is usu-
ally approached in line with the extension principle, i.e. by aggregating all real-valued input vectors lying
within the interval boundaries and taking the union as the final output. Although this is consistent with
the aggregation of convex interval inputs, in the non-convex case such operators are not idempotent and
may result in outputs which do not faithfully summarize or represent the set of inputs. After giving an
overview of the treatment of non-convex intervals and their associated interpretations, we propose a
novel extension of the arithmetic mean based on penalty functions that provides a representative output
and satisfies idempotency.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The arithmetic mean is the standard ‘‘go to’’ operator employed
in various sciences, statistics, economics and fuzzy decision mak-
ing for aggregating a set of inputs into a single representative
value. For example, a number of small errors may arise naturally
when we conduct repeated experiments or in our data collection,
so we use the arithmetic mean to average the results, providing a
reasonable estimate of what might be the true value. In fuzzy deci-
sion making, the arithmetic mean of the expert evaluations or
membership values can be used to compare potential alternatives,
allowing us to choose the best overall option. On the other hand,
we may simply be interested in a summary statistic that tells us
in some way what is normal or expected for a particular set of
inputs, e.g. to describe a population in terms of the average life
expectancy.

More broadly, the arithmetic mean is one example of an averag-
ing aggregation function [5,14,23]. Aggregation functions have
been studied for various practical applications and a number of
alternatives to the arithmetic mean have been proposed that
may perform more reliably for certain types of data. In the face
of uncertainty pertaining to the inputs, either arising from linguis-
tic descriptions or data collection methods, the need has also been

identified to extend aggregation functions to deal with inputs
expressed as intervals [11], pairs of positive and negative informa-
tion such as Atanassov orthopairs [1] or other multiple-valued
inputs [2,3].

Although a number of results have been established for these
data types (especially in the field of fuzzy sets aggregation), more
recently some researchers have tackled the problem of aggregating
inputs provided as non-convex or discontinuous intervals, i.e.
intervals that contain gaps or are comprised of a sequence of dis-
joint intervals. In statistics research, such inputs can occur through
censoring where the data cannot be observed over particular inter-
vals. In probability theory, the study of random sets also gives rise
to non-convex sets and the need to calculate their expectation (see
[20] for a detailed overview). For examples in the fuzzy research
community, we can mention the hesitant fuzzy sets of Torra and
Narukawa [22,24] – where the input usually denotes a discrete
set of possible evaluations between 0 and 1, the generalized gray
numbers of Yang and John [29,30] – where an input is known to
lie within a potentially non-convex range of values, and the discon-
tinuous intervals of Wagner et al. [26].

These are inputs of the form

Ai ¼
[mi

j¼1

½a�ij ; a
þ
ij
�; ð1Þ

where ½a�ij ; a
þ
ij
� denotes the j-th interval with

aþij < a�ijþ1
; j ¼ 1;2; . . . ;mi � 1. It may also be convenient to represent
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such intervals as a sequence of intervals (as in [16]), i.e. for
Ai ¼ ½a�i1 ; a

þ
i1
�[; . . . ;[½a�imi

; aþimi
� we will simply write Ai ¼ h½a�i1 ; a

þ
i1
�; . . . ;

½a�imi
; aþimi
�i.

We can consider the following situations where it may be useful
to work with non-convex intervals.

Example 1 (Uncertainty with travel times [30]). Two trains are
scheduled to depart 5 min apart however both could be up to
2 min late. The earlier train is sometimes full and it takes 3 min to
travel to the next station. The time it will take a passenger (arriving
in time for the first train) to reach the next station can be
represented with the input h½3;5�; ½8;10�i.

Example 2 (Species population recovery intervals [21]). An ecology
expert is asked to provide her estimation of when a species will
reach healthy population levels following a forest fire. A species
may increase in population immediately following the fire, then
decrease as other species start to recover, before increasing again
to its pre-disturbance levels. The expert can use the non-convex
interval h½1;2�; ½8;20�i to indicate that the population is predicted
to be at healthy levels 1–2 years and 8–20 years after the fire,
but below the threshold at other times.

Example 3 (Analysis of recurring health problems [15]). After a
patient is treated and released from hospital, they may make a full
recovery or sometimes their health will deteriorate and they will
be readmitted. In some cases, the patient may be readmitted a
number of times. In order to investigate contributing factors,
experts represent each patient’s time in hospital with non-convex
intervals, e.g. an input h½12;13�; ½16;18�; ½24;27�i would indicate a
patient was readmitted for 3 periods after 12, 16 and 24 months,
and stayed in hospital for various lengths of time.

In each of the examples above, the inputs represent temporal
data [16], with an event (or the uncertainty pertaining to an event)
taking duration over discontinuous time periods. However there
may also be cases where we need to aggregate non-convex inter-
vals that represent spatial data, e.g. in the fusion of sensor readings
observing a non-continuous space, measurements that are uncer-
tain because they lie outside an observable range (censored data),
or even evaluations in fuzzy decision making [24]. The authors in
[26] also note example applications in forensic science, hazard
detection, agreement-based modeling and computing with respect
to linguistic descriptions.

In research areas such as statistics, a common approach for han-
dling either standard interval or non-convex interval inputs is to
represent them with single values, e.g. a mid-point or the most
probable value. While this may be effective under certain condi-
tions, working with the inputs in their original form can allow
for robust analyses and inferences which are free of assumptions
pertaining to the source of uncertainty [11].

The extension of averaging aggregation functions to non-convex
inputs in the fuzzy domain has thus far been approached in a man-
ner consistent with the extension principles applied for fuzzy oper-
ations (e.g. in [10] for operations on fuzzy numbers) and interval
arithmetic [11]. All possible real-valued input vectors x with
xi 2 Ai 8i are aggregated and the union of these aggregated values
is taken as the output. We contend that while this approach is suit-
able for most situations when the intervals are convex, the non-
convex case presents two unique problems:

1. These resulting aggregation functions are not idempotent, i.e. it
does not necessarily hold that f ðt; t; . . . ; tÞ ¼ t if t is a non-con-
vex interval. Idempotency is a key property for averaging func-
tions when it is desired that the output gives a representative or

typical value. If we wanted to consider the ‘‘average’’ evaluation
from 10 ecology experts in Example 2 above and all 10 provided
the same interval h½1;2�; ½8;20�i, then we would expect the same
non-convex interval to be returned as the output.

2. As the number of inputs grows large, aggregating non-convex
inputs in this fashion converges towards aggregating their con-
vex hulls or envelopes (the intervals defined by the lower and
upper bounds). This raises the question of whether anything
is gained by using non-convex intervals to represent the uncer-
tainty of the model in the first place.

In this article, we approach the problem of aggregating non-
convex intervals in the framework of penalty-based functions.
We show that existing methods can be recovered with the choice
of various penalties and then propose a new penalty which results
in an extension of the arithmetic mean which is idempotent and
can more faithfully represent a ‘‘typical input’’.

The article will be structured as follows. In Section 2 we will
give an overview of the concepts that underlie the proposed oper-
ators. In particular, we look at aggregation functions, penalty-
based methods for constructing them, and various types of inputs
for which they have been defined. In Section 3, we recall the defi-
nitions of functions which have been used in various settings to
aggregate non-convex interval valued inputs, noting their relation-
ship to penalty functions defined for intervals. We then consider
the problem of defining penalties between non-convex intervals
in Sections 4 and 5, we propose a new penalty for non-convex
inputs and define our new operator. We present some numeric
examples in Section 6 to help illustrate differences between the
existing and proposed methods, before discussing some other
potential approaches in Section 7 and concluding in Section 8.

2. Preliminaries

We will firstly provide the basic definitions relating to aggrega-
tion functions and show how they can be defined with respect to
penalty functions. We then give an overview of various input types
which have extended the use of real inputs to incorporate uncer-
tainty into decision processes and modeling applications.

We will consider aggregation functions (see [5,14,23]) defined
over the unit interval.

Definition 1 (Aggregation function). An aggregation function
f : ½0;1�n ! ½0;1� is a function non-decreasing in each argument
and satisfying f ð0; . . . ;0Þ ¼ 0 and f ð1; . . . ;1Þ ¼ 1.

The monotonicity of aggregation functions is important when
used for decision making to ensure that an increase to one of the
criteria should not result in a decrease in the overall evaluation.
Here we are interested particularly in averaging aggregation
functions.

Definition 2 (Averaging aggregation function). An aggregation
function f is considered to be averaging where for x 2 ½0;1�n,

minðxÞ 6 f ðxÞ 6 maxðxÞ:

Due to the monotonicity of aggregation functions, averaging
behavior is equivalent to idempotency, i.e. f ðt; t; . . . ; tÞ ¼ t.

Typical examples include the arithmetic mean (sometimes
referred to simply as ‘‘the average’’) and the median. For an input
vector x consisting of n values, the arithmetic mean
AM : x 2 ½0;1�n ! ½0;1� is given by

AMðxÞ ¼
Xn

i¼1

1
n

xi: ð2Þ
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