
A hybrid approach to self-management in a pervasive service
middleware

Weishan Zhang a,⇑, Klaus Marius Hansen b, Mads Ingstrup c

a Department of Software Engineering, China University of Petroleum, No. 66 Changjiang West Road, Qingdao 266580, China
b University of Copenhagen, Njalsgade 128, 2300 Copenhagen S, Denmark
c No Magic, Bangkok, Thailand

a r t i c l e i n f o

Article history:
Received 3 April 2013
Received in revised form 28 May 2014
Accepted 1 June 2014
Available online 14 June 2014

Keywords:
Self-management
Architectural styles
Component control
Goal Management
Change Management

a b s t r a c t

Self-management capabilities for pervasive computing systems are critical in improving dependability,
usability, and autonomicity. However, realizing self-management is not an easy task due to complexities
of implementing autonomous behaviors. It has been recognized that a single autonomicity handling
mechanism is not sufficient to realize comprehensive self-management capabilities when different tech-
nologies are involved. Therefore, we propose a hybrid approach, the ‘LinkSmart Three Layered architec-
tural (LinkSmart-3L) style’, in which different architecture styles are incorporated. The LinkSmart-3L style
enables self-management at an architectural level. In our approach, semantic web technologies are used
to achieve comprehensive context-awareness and extensibility of self-management capabilities, genetic
algorithms are used to achieve configuration optimizations, and a planner is used to compute planning
procedures on how to arrive at an optimum system configuration based on current architectural struc-
ture of the underlying system using an architectural query language. These technologies are integrated
seamlessly based on the service oriented computing (SoC) paradigm. We have extensively evaluated both
runtime and development time qualities of our implementation of the style. These evaluations can serve
as guidelines for evaluating other middleware systems. We conclude that our approach is usable and
effective in achieving these quality attributes.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Self-management capabilities are attractive for pervasive com-
puting systems as these systems are becoming more widely
deployed, and requirements on dependability increase. Such sys-
tems are operated as open systems undergoing dynamic changes
in which services and devices may join or leave at any time
anywhere, and system resources, e.g., battery levels may fluctuate
dynamically. Self-management capabilities as in autonomic
computing [1] can potentially make these pervasive systems more
user-friendly and energy efficient. For example, to diagnose the
source of a failure and then recover to a normal operating state,
or to make full use of remaining energy to prolong the runtime
of a system. Because of these potential benefits, many efforts have
been put into the realization of self-management capabilities [1].
These self-management capabilities are considered as the most
important features of future network applications and should be
given priority in future research [2].

Although there is substantial pervasive middleware research
such as EU MUSIC [3] and Rainbow [4,5], these efforts have
primarily used a single approach to or focused on a single aspect
of self-management. For example, the MUSIC project explored
architecture based self-adaptation, while paying little attention
to other self-management features such as self-protection, and
self-optimization. For architecture-based self-adaptation, a critical
issue is the choice of an architectural style to represent a target
system [5], but the MUSIC project did not focus on this either.
Kramer and Magee [6] observe that many early self-managing sys-
tems followed the ‘sense-plan-act’ architecture (e.g., Rainbow by
Garlan et al. [4]) in which a system conceptually cycles through
sense-plan-act phases. Kramer and Magee proposed a three lay-
ered architecture style that incorporate these three phases, but this
is only an abstract reference model that needs to be verified in
practice, and the problem of how to actually derive a software
architecture style that can be implemented and used in practice
for self-management systems is not addressed.

On the other hand, implementing and achieving self-manage-
ment are not easy tasks [7]. There are many aspects that should
be considered in a self-management solution, such as effective

http://dx.doi.org/10.1016/j.knosys.2014.06.002
0950-7051/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +86 532 86981972.
E-mail address: zwssky@gmail.com (W. Zhang).

Knowledge-Based Systems 67 (2014) 143–161

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2014.06.002&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2014.06.002
mailto:zwssky@gmail.com
http://dx.doi.org/10.1016/j.knosys.2014.06.002
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


sensors to detect system status, actuators to accomplish needed
changes, change management schemes to react to self-manage-
ment changes, and reasoning on which actions to take. Further-
more, if an existing scheme cannot fulfill a Quality of Service
(QoS) requirement, planning mechanisms should be used to help
to find a corresponding (near) optimal configuration, and then this
configuration should be enabled dynamically. Thus, the whole self-
management process involves quite a number of different tasks
which can be realized with different techniques. Correspondingly,
a self-management solution should support a hybrid of different
techniques technologies at an architecture level in order to inte-
grate these technologies seamlessly. A single mechanism for realiz-
ing self-management may be considered as too limited to realize
comprehensive autonomic features [7].

In the process of reaching a hybrid solution for self-manage-
ment, there exist a number of challenges. These include:

1. How to define an architectural style that can be used to achieve
self-management at an architectural level [6].

2. How to verify this architectural style by a practical implemen-
tation in order to show usefulness.

3. How to achieve interoperability, modifiability, and extensibility
in this architectural style to easily integrate various self-man-
agement features including self-protection, self-protection,
self-optimization, and self-configuration. Preferably it should
be simple to add new self-management features that do not
exist.

4. How to make sure that technologies used for various purposes
can be integrated in this architectural style.

To address these challenges, we propose the LinkSmart Three
Layered architectural (LinkSmart-3L) style that features a service-
oriented architecture and seamlessly integrates several technolo-
gies to facilitate self-management. In our practical implementation
and evaluation, we use pervasive web services [8] and OSGi Declar-
ative Services [9]. The main contributions of our work are:

1. A ‘LinkSmart Three Layered architectural (LinkSmart-3L) style’
is proposed and exemplified. This style combines different
architectural styles to enable architecture-level self-manage-
ment. This makes it possible to bring together benefits from
those underlying architectural styles.

2. Our approach is realized such that different self-management
technologies can be integrated seamlessly based on the
service-oriented computing paradigm. In our implementation,
we have integrated Semantic Web technologies, genetic algo-
rithms, an architectural scripting language, and an architectural
query language.

3. Our middleware is evaluated in terms of runtime qualities
including interoperability, performance, scalability, and devel-
opment-time qualities including modifiability, testability and,
usability, following the quality attributes framework proposed
by Bass et al. [10]. We have performed evaluations which can
serve as guidelines for evaluating other middleware systems,
as currently there are no unified evaluation criteria or
methodology.

4. Following the proposed evaluation quality attributes, our
approach has been evaluated extensively in the LinkSmart mid-
dleware. For interoperability, both the .NET and Java environ-
ments are tested. This includes tests of using various available
wired and wireless communication protocols. The performance
has been tested extensively for various components and a
whole self-management life cycle takes less than 4s which is
acceptable in a distributed pervasive service environment. The
scalability tests show that the needed time to process self-man-
agement actions is in linear with the number of events for our

tests. The modifiability tests show that the middleware can be
extended with relative ease to add new self-management func-
tions. The testability and usability tests show that the proposed
approach is practical in use.

5. To promote the usage of self-management technologies and
encourage research in this area, we have released our work
including a set of supporting ontologies as open source such
that other researchers can explore and potentially further our
work.

The remainder of this article is organized as follows. First, we
present background on self-management, especially architectures
for self-management in Section 2. In order to address challenge
number 1, we define an architectural style (LinkSmart-3L) based
on a set of objectives and constraints for self-management (Sec-
tion 3) and we discuss key design choices of the LinkSmart-3L
style. We then present the LinkSmart-3L architecture that follows
a three layered self-management architectural model (Section 4)
and we give design details of each layer. We show how to develop
a self-managed application in B using a simple case study. Compre-
hensive evaluations regarding runtime and development time
qualities of our approach are presented in Section 5. We discuss
related work in Section 6. Conclusions and future work end this
paper in Section 7.

2. Software architectures for self-management

The task of architecting self-managing systems can be
approached from several conceptual perspectives, which lead to
different architectures.

In one approach, inspiration is sought from nature to build sys-
tems with no explicit locus of control. An example is division of
labor in a group of robots inspired by the decentralized organiza-
tion of an ant colony [11]. This approach has particularly been
applied to autonomic communications [12], but systems based
on it are arguably difficult to engineer [13].

Another conceptual approach is to leverage traditional Artificial
Intelligence (AI) by relying on explicit representation of plans as a
basis for action. Although this might lead to a system with a central
control unit (e.g., an AI planner as in [14]), control can also be dis-
tributed, e.g., by using Belief-Desire-Intention (BDI) agents [15].

A third conceptual approach is inspired by the model used to
engineer control systems [16]. While it is orthogonal to the first
two approaches in that it assumes nothing about representation
of plans, it does require a certain level of centralized control in
so far as measured system output must be compared with the
desired output in order to compute the control measure needed
to align the two.

Many early architectures for autonomous robotics [17] follow
the ‘‘sense-plan-act’’ architecture, which suffers from difficulties
in maintaining precise ‘‘world models’’. Brook’s subsumption
architecture [18] avoided this by following the slogan ‘‘the world
is its own best model’’ and relying extensively on sensors, but it
did not provide sufficient means to handle complexity. The three
layer (3L) architecture described by Gat [17] combines ideas from
both, in that the stateless and low complexity online control algo-
rithms reside in the bottom layer, while the top layer employs tra-
ditional modeling and high-complexity planning algorithms, with
the middle layer acting as interface between the two. This architec-
ture has become a de facto standard architecture in autonomous
robotics.

The self-management approach of LinkSmart follows the three
layered reference model proposed by Kramer and Magee [6]
which is adapted from Gat’s 3L architecture. An overview is shown
in Fig. 1.

144 W. Zhang et al. / Knowledge-Based Systems 67 (2014) 143–161



Download	English	Version:

https://daneshyari.com/en/article/405084

Download	Persian	Version:

https://daneshyari.com/article/405084

Daneshyari.com

https://daneshyari.com/en/article/405084
https://daneshyari.com/article/405084
https://daneshyari.com/

