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a b s t r a c t

Unsupervised feature selection methods based on a non-parametric model usually focus on using the
neighbors of each point for identifying salient features, which are helpful for performing clustering to sat-
isfy both within-cluster and between-cluster scatter criteria. However, these methods usually suffer from
two restrictions, i.e., sensitivity restriction and scalability restriction, in choosing the neighbors and
determining the number of neighbors. In this paper, we propose a new non-parametric mechanism based
on unsupervised learning for feature assessment and selection in image clustering. Our mechanism
potentially overcomes the existing restrictions by identifying representative neighbors that primarily
divide a dataset into subsets. We subsequently present a new solution used to minimize the number
of representative neighbors by searching for a hyperplane that separates two linearly separable and
neighboring clusters for which the distances of the representative neighbors from the hyperplane are
minimal. We finally present a wrapper-based method that uses a backward strategy from our feature
assessment and selection process to consider these representative neighbors. In tests on benchmark
image datasets, the experimental results indicate that our method performs better in terms of relative
cluster validations and statistical hypothesis testing than mutual information statistics for both discovery
of interesting patterns and selection of features for cluster analysis.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Feature selection based on unsupervised learning is an active
research topic in the data-mining field and is often aimed at selec-
tion of salient features (or attributes) that are effective for discov-
ering natural clusters while satisfying the within-cluster scatter
(e.g., the points within a cluster are similar) and between-cluster
scatter criteria (e.g., the points between clusters are different).
The literature describes many feature selection applications for
pattern recognition [1], gene expression [2], image annotation [3]
and text clustering [4]. We assume that there exists a gray-scale
image dataset that must be divided into clusters and that the size
of each image is 50 � 100 pixels. The size of the vector used to
represent this image is 50 � 100 � 256 = 1,280,000. The clusters
are built using all features, which include noise and thus usually
suffer from weak interpretability of the cluster results because
the instances in this image dataset have high data dimensionality.
Most existing technologies for identification of salient features use
a variance metric to evaluate an intrinsic variable. For example, a

random variable with a large variance will increase only the
between-cluster scatter, whereas another variable that follows a
uniform distribution will increase only the within-cluster scatter
[5]. Recently, non-parametric methods that consider the neighbors
of each point have offered new options for feature selection [6–9].

Using the non-parametric model to consider the neighbors of
each point for identification of salient features, our previous
method [10] based on a filter model studied the basic characteristic
of clustering by assuming that an instance usually belongs to a
cluster that includes its nearest neighbors and belongs to different
clusters than its farthest neighbors. Without the aid of any cluster-
ing learning algorithm to provide cluster information (e.g., cluster
shape and number of clusters) for training, the salient features are
thus selected from those that maximally satisfy this characteristic.
We later proposed a new feature evaluator [5] that considered
compactness (i.e., the average similarity from an instance to its
nearest neighbors) and separability (i.e., the average distance from
an instance to its farthest neighbors) to produce a feature salience
vector. Furthermore, side information [6,7] (e.g., pairwise con-
straints between instances) was used to purify the nearest
and the farthest neighbors to achieve feature assessment [11].
The nearest and the farthest neighbors appear to be helpful in
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identification of salient features, which further aids in satisfying
the within-cluster scatter and between-cluster scatter criteria in
the clustering process.

Although many non-parametric methods that consider neigh-
bors for feature assessments have been proposed, most suffer from
two restrictions, i.e., sensitivity restriction and scalability restric-
tion. First, because neighbors are usually chosen to observe how
the features describe the data instances in a cluster or in different
clusters, the optimal set of neighbors can be generalized such that
each instance and its nearest neighbors will be included in a cluster,
and each instance and its farthest neighbors will be located in dif-
ferent clusters. These chosen neighbors must thus be quite sensitive
to feature assessment because different neighbors must result in
different salient features. Second, because the number of these
neighbors must be an empirical parametric value, the above-
mentioned non-parametric methods would thus be non-scalable
when the number of neighbors should be large. We assume a set
of n data instances, and for each, we consider K neighbors. If K is suf-
ficiently large (e.g., approximately n), the computational time
involved in choosing these neighbors for feature assessment will
be approximately O(n2), making data storage notably expensive.

In this paper, we propose a new non-parametric mechanism for
feature assessment and selection based on unsupervised learning.
This mechanism overcomes the existing restrictions with respect
to two major components. First, we obtain clusters for a dataset
and search for the representative neighbors that divide this dataset
by clustering into subsets (i.e., clusters). In this specific use, we
build a graph composed of a set of vertices and a set of weighted
edges, which are connected to estimate the distances between
the vertices. In this way, the estimated distances involve summing
up the weights on the edges by traversing the vertices in the graph.
We therefore obtain a distance matrix whose size is n � n. This
matrix is subsequently input to the visual assessment of cluster
tendency (VAT) method [12,13], which is effective for estimating
the number of clusters. The clusters are then obtained using a clus-
tering learning algorithm with respect to the estimated number of
clusters. The representative neighbors for each instance are thus
chosen and are guaranteed to be positioned on the border of those
clusters.

Second, we present a new solution for minimizing the number
of representative neighbors. We assume the existence of a
hyperplane that has a maximal margin between two linearly
neighboring clusters. The support vectors on the two sides of the
separating hyperplane must exhibit the shortest distance among
all of the distances between the instances on the different sides.
We thus choose two representative neighbors from the two oppos-
ing sides such that the distance between these two neighbors is
minimal. Our solution considers only two representative neighbors
and thus should be more scalable because the computational time
required to choose representative neighbors for our feature assess-
ment becomes O(2n). Finally, we present a wrapper-based method
that uses a backward strategy with consideration of representative
neighbors for feature assessment and selection.

This paper is organized as follows. Section 2 introduces the
background studies related to neighbor-based learning for feature
selection. Section 3 explains our feature assessment and selection
methods, and Section 4 presents the experimental results. A brief
discussion is given in Section 5, and finally, Section 6 details the
conclusions.

2. Background study on neighbor-based learning for feature
assessment

We study selected state-of-the-art methods with respect to
three major components that are closely related to the development

of our method. First, we study a neighbor-based learning method
that chooses neighbors for feature assessment. To improve the
effectiveness of choosing those neighbors, we use graph theory to
build a graph for estimating the distances between instances.
Finally, we apply the neighbor-based learning method with consid-
eration of clusters for choosing neighbors and determine the
number of neighbors, a method that suffers from sensitivity and
scalability restrictions. These three components stimulate us to
develop extensive solutions that overcome these restrictions in fea-
ture assessment by identifying representative neighbors.

2.1. Feature selection based on neighbor-based learning

In this section, we study the background of neighbor-based
learning for feature assessment. Assume that we have a dataset
X, including n data instances x1, . . . , xn, where xi = [x1,i, . . . , xj,i,
. . . , xd,i]T denotes the ith instance with d dimensions. We follow
our previous method [11] with revisions to briefly consider the
nearest and the farthest neighbors and to find a new feature space
that results from a feature vector w such that the loss between two
sets of neighbors in this new space is minimized. Let us assume
that a hyperplane exists with a maximal margin between two sets
of neighbors. The support vectors on the two sides of the separat-
ing hyperplane have the shortest distance between the instances
on the different sides among all of the distances. We thus define
a margin-based loss function for the neighbors to obtain the sup-
port vectors of xi, and the function is written as follows:

qðxiÞ ¼ argmin
l2f1;...;Lg
k2f1;...;Kg

ððwT � eðxi;x
/
i!lÞÞ � ðw

T � eðxi;xH
i!kÞÞÞ ð1Þ

where q(xi) measures the margin and has the shortest distance
between two sets of neighbors for xi in the new feature space.
The function e(.,.) is an element-wise absolute operator (e.g.,
e([0.2, 0.5]T, [0.3, 0.8]T) = [0.1, 0.3]T) for which the Manhattan metric
is used to compute the distance, / represents the farthest operator,
and H represents the nearest operator. In this work, x/

i!l is the lth
farthest neighbor, and xH

i!k is the kth nearest neighbor of xi. Both
L and K represent the number of neighbors. The number of farthest
neighbors or nearest neighbors is defined according to pðlÞ ¼Pn

r¼1;r–iIððdistðxi;xrÞP distðxi;x
/
i!lÞÞ or wðkÞ ¼

Pn
r¼1;r–iIððdistðxi;xrÞ

6 distðxi;xH
i!kÞÞ, where p() and w() are used to choose the number

of neighbors. The function dist(.,.) measures the distance between
instances, and I[] outputs 1 when the condition is satisfied and
assigns a value of 0 otherwise.

We briefly illustrate an example to represent feature salience.
For example, we obtain the first item e(., .) = [0.6,0.1]T and the
second item e(.,.) = [0.1,0.7]T under w = [0.5,0.5]T. To observe
[0.6,0.1]T, we note that the first dimension primarily drives the
data into different clusters (i.e., the between-cluster distance is
large). To observe [0.1,0.7]T, we note that the first dimension leads
to the data located in a single cluster (i.e., the within-cluster
distance is small). The first dimension is thus more salient than
the other because a large eðxi; x

/
i!lÞ would maximize the

between-cluster distances and a small eðxi;xH
i!kÞ would minimize

the within-cluster distances.

2.2. Searching for neighbors while violating the triangle inequality

We implement graph theory to estimate the distances between
instances by searching for neighbors x/

i!l and xH
i!k. The graph is

composed of vertices and weighted edges. The vertices represent
data instances, and the weighted edges represent the distances
between any two vertices calculated by the distance metric. Use
of the built graph should be effective in searching for those neigh-
bors because it is commonly used to overcome the shortcomings of
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