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a b s t r a c t

Both support vector machine (SVM) and twin support vector machine (TWSVM) are powerful classification
tools. However, in contrast to many SVM-based feature selection methods, TWSVM has not any correspond-
ing one due to its different mechanism up to now. In this paper, we propose a feature selection method
based on TWSVM, called FTSVM. It is interesting because of the advantages of TWSVM in many cases.
Our FTSVM is quite different from the SVM-based feature selection methods. In fact, linear SVM constructs
a single separating hyperplane which corresponds a single weight for each feature, whereas linear TWSVM
constructs two fitting hyperplanes which corresponds to two weights for each feature. In our linear FTSVM,
in order to link these two fitting hyperplanes, a feature selection matrix is introduced. Thus, the feature
selection becomes to find an optimal matrix, leading to solve a multi-objective mixed-integer programming
problem by a greedy algorithm. In addition, the linear FTSVM has been extended to the nonlinear case. Fur-
thermore, a feature ranking strategy based on FTSVM is also suggested. The experimental results on several
public available benchmark datasets indicate that our FTSVM not only gives nice feature selection on both
linear and nonlinear cases but also improves the performance of TWSVM efficiently.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Feature selection [18,15,6,11,19] is an important problem since
it removes the irrelevant features and maintains the relevant fea-
tures that are as close to the class as possible. The benefit of feature
selection is twofold. On one hand, it is meaningful because it can
identify the features that contribute most to classification. On the
other hand, feature selection is helpful for solving the classification
problem since it can not only reduce the dimension of input space
and speed up the computation procedure but also improve the
classification accuracy. There are mainly two types of feature selec-
tion methods: one is the general methods independent of any clas-
sifiers, e.g., Fisher score [38] and Laplacian score [12]; the other
one is the wrapper-type method dependent on the classifier, e.g.,
the methods based on Bayesian network [14], based on neural net-
works [32] and based on support vector machine (SVM) [2,23]. The
wrapper-type methods attract more attentions and often improve
the performance of the original classifier as well [14,37,23,2,32].

It is interesting to investigate the wrapper-type feature selec-
tion methods based on the twin support vector machine (TWSVM)
[16,35]. TWSVM generates two nonparallel fitting hyperplanes and

has superior performance than SVM [3,21,7,43] on both the classi-
fication accuracy and learning speed in many practical applications
[16,35,33,30]. Particularly, it is suitable for some special datasets,
e.g., ‘‘cross-planes’’ [16]. However, in contrast to SVM which owns
many wrapper-type feature selection methods such as SVM-RFE
[23] and RFSVM [2], TWSVM has no any corresponding one. The
reason is that the current SVM-based feature selection methods
cannot be used to TWSVM directly. In fact, for each feature, SVM
provides a single weight corresponding to the single separating
hyperplane whereas TWSVM provides two weights corresponding
to two fitting hyperplanes, leading to some difficulties for feature
selection.

In this paper, we propose a novel feature selection method for
TWSVM, called FTSVM for short. Our FTSVM includes two forms:
linear FTSVM and nonlinear one. The former is formulated by the
following steps: first of all, a basic L1-TWSVM is proposed by
introducing the L1-norm regularization terms, due to the success
in L1-SVM to obtain a sparse feature weight [44,20,8,13]; then, a
feature selection matrix, a diagonal matrix with element either 1
or 0, is introduced in the proposed L1-TWSVM, resulting to two
mixed integer programming problems (MIPPs); finally, the two
MIPPs are solved simultaneously as a multi-objective mixed inte-
ger programming problem (MOMIPP) [39] by an greedy algorithm.
The nonlinear FTSVM is constructed by kernel trick [16,35], which
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needs also to solve a MOMIPP by the proposed greedy algorithm. In
addition, based on FTSVM, a feature ranking strategy is suggested,
which ranks the features according to their contributions to the
objective in the MOMIPP. The experimental results show that our
FTSVM not only gives nice feature selection but also improves
the performance of TWSVM.

This paper is organized as follows. A briefly review of
L2-TWSVM is in Section 2, and the standard L1-TWSVM is proposed
in Section 3. Our feature selection and ranking methods are formu-
lated in Section 4, and experiments are arranged in Section 5.
Finally, Section 6 gives the conclusions. For convenience, in Table 1,
we present some notations used in the paper.

2. Review of L2-TWSVM

Consider the binary classification problem with m1 training
samples belong to positive class represented by A1 and m2 training
samples belong to negative class represented by A2 in the
n-dimensional real space Rn, a classifier attempts to predict the
new samples belong to either positive or negative class.

TWSVM [16] seeks two nonparallel hyperplanes

f1ðxÞ ¼ xw1 þ b1 ¼ 0 and f 2ðxÞ ¼ xw2 þ b2 ¼ 0 ð1Þ

such that each one is the fitting hyperplane of one of the positive
and negative classes, a new sample will be predicted to one class
if it is closer to the corresponding fitting hyperplane. TWSVM keeps
the fitting hyperplane as close as possible to its corresponding
training samples and far away from the others. The purpose of
L2-TWSVM [35] is very the same as TWSVM, where the difference
is L2-TWSVM introduces the L2 regularization terms of the weight
vectors into TWSVM to minimize the structural risk. L2-TWSVM
solves following quadratic programming problems (QPPs)

min
w1 ;b1 ;n1

1
2
kw1k2

2 þ b2
1 þ c11kA1w1 þ b1ek2

2

� �
þ c12e>n1

s:t: � ðA2w1 þ b1eÞ þ n1 P e; n1 P 0;
ð2Þ

and

min
w2 ;b2 ;n2

1
2
kw2k2

2 þ b2
2 þ c21kA2w2 þ b2ek2

2

� �
þ c22e>n2

s:t: A1w2 þ b2eþ n2 P e; n2 P 0;
ð3Þ

where c11; c12; c21; c22 > 0 are parameters, n1 2 Rm2 and n2 2 Rm1 are
slack vectors.

The geometric meanings of (2) and (3) are clear. For example,
for (2), its objective function makes the fitting hyperplane
f1ðxÞ ¼ 0 of the positive class fit the positive class samples A1, while
the constraints keep the negative class far from this hyperplane to
some extent (the bias of each negative training sample to f1ðxÞ ¼ 0
is no more than �1).

The above linear L2-TWSVM has been extended to nonlinear
classifier by kernel trick [35]. Define the inner product by the
kernel function Kð�; �Þ, nonlinear L2-TWSVM seeks two kernel
generated surfaces

f1ðxÞ ¼ Kðx;AÞu1 þ c1 ¼ 0 and f 2ðxÞ ¼ Kðx;AÞu2 þ c2 ¼ 0; ð4Þ

where A is the whole training set, including A1 and A2.
The corresponding QPPs solved in nonlinear L2-TWSVM are

min
u1 ;c1 ;n1

1
2
ku1k2

2 þ c2
1 þ c11kKðA1;AÞu1 þ c1ek2

2

� �
þ c12e>n1

s:t: � ðKðA2;AÞu1 þ c1eÞ þ n1 P e; n1 P 0;
ð5Þ

and

min
u2 ;c2 ;n2

1
2
ku2k2

2 þ c2
2 þ c21kKðA2;AÞu2 þ c2ek2

2

� �
þ c22e>n2

s:t: KðA1;AÞu2 þ c2eþ n2 P e; n2 P 0:
ð6Þ

3. L1-TWSVM

As stated above, L1-SVM which is sparser than L2-SVM [8,13] is
proposed by replacing the L2 norm regularization term in L2-SVM
with L1 norm. Therefore, we propose the L1-TWSVM that mini-
mizes L1-norm of the feature weight vectors so that the features
are sparser than L2-TWSVM. Similar to L1-SVM, we introduce the
L1-norm of wi; i ¼ 1;2, and straightly transform the other parts in
L2-TWSVM from L2 norm to L1-norm as follows

min
w1 ;b1 ;n1

kw1k1 þ c11kA1w1 þ b1ek1 þ c12kn1k1

s:t: � ðA2w1 þ b1eÞ þ n1 P e; n1 P 0;
ð7Þ

and

min
w2 ;b2 ;n2

kw2k1 þ c21kA2w2 þ b2ek1 þ c22kn2k1

s:t: A1w2 þ b2eþ n2 P e; n2 P 0:
ð8Þ

Different from solving two dual QPPs in L2-TWSVM [35], the
above problems can be solved as two differentiable linear
programming problems (DLPPs) [9,22]. Define wi ¼ pi � qi;

Aiwi þ bie ¼ si � ti; i ¼ 1;2, then (7) and (8) are equivalent to

min
p1 ;q1 ;s1 ;t1 ;b1 ;n1

e>ðp1 þ q1Þ þ c11e>ðs1 þ t1Þ þ c12e>n1

s:t: A1ðp1 � q1Þ þ b1e ¼ s1 � t1;

A2ðp1 � q1Þ þ b1e 6 �eþ n1;

p1; q1; s1; t1; n1 P 0;

ð9Þ

and

min
p2 ;q2 ;s2 ;t2 ;b2 ;n2

e>ðp2 þ q2Þ þ c21e>ðs2 þ t2Þ þ c22e>n2

s:t: A2ðp2 � q2Þ þ b2e ¼ s2 � t2;

A1ðp2 � q2Þ þ b2e P e� n2;

p2; q2; s2; t2; n2 P 0:

ð10Þ

Note si ¼ Aiðpi � qiÞ þ bieþ ti; i ¼ 1;2, the final problems we
solved are

Table 1
The symbols used in this paper.

Symbol Domain Description

m1; m2 Zþ Number of positive and negative training samples
m Zþ Number of training samples, m ¼ m1 þm2

n Zþ Dimension of training samples
xi Rn The ith training sample
yi {+1,-1} Class of the ith training sample
A1; A2 Rm1�n; Rm2�n Positive and negative training matrices
A Rm�n Training matrix, A ¼ ½A1; A2�
e Vector of ones of appropriate dimension
w1;2; b1;2 Rn;R Normal vectors and biases
u1;2; c1;2 Rm;R Normal vectors and biases
n1;2 Rm2;1 Slack vectors
c11;12;21;22 Rþ Parameters
r Rþ Parameter
k (0, 1) Parameter
E diag (1 or 0) Diagonal matrix
Kð�; �Þ Kernel function
jj � jj1;2 L1;2 norm
ð�Þþ Replaces the negative elements with 0
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