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In multiple attribute decision making (MADM), different attribute weights may generate different solu-
tions, which means that attribute weights significantly influence solutions. When there is a lack of suf-
ficient data, knowledge, and experience for a decision maker to generate attribute weights, the
decision maker may expect to find the most satisfactory solution based on unknown attribute weights
called a robust solution in this study. To generate such a solution, this paper proposes a robust evidential
reasoning (ER) approach to compare alternatives by measuring their robustness with respect to attribute
weights in the ER context. Alternatives that can become the best with the support of one or more sets of
attribute weights are firstly identified. The measurement of robustness of each identified alternative from
two perspectives, i.e., the optimal situation of the alternative and the insensitivity of the alternative to a
variation in attribute weights is then presented. The procedure of the proposed approach is described
based on the combination of such identification of alternatives and the measurement of their robustness.
A problem of car performance assessment is investigated to show that the proposed approach can effec-
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tively produce a robust solution to a MADM problem with unknown attribute weights.
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1. Introduction

With a view to solving a multiple attribute decision making
(MADM) problem, the assessments of alternatives on each
attribute are usually aggregated after being weighted by attribute
weights. The aggregated assessments of alternatives are then used
to generate a solution to the MADM problem. Different attribute
weights may create different solutions to the problem. As a result,
attribute weights significantly influence solutions to the problem.

In literature, there are three categories of methods to determine
attribute weights, comprising subjective, objective, and hybrid
methods [40]. Subjective methods use the subjective preference
of a decision maker to determine attribute weights (e.g.,
[2,8,13,21,22,28-31,34,36-38,59]). Differently, objective methods
use a decision matrix to determine attribute weights (e.g.,
[4,5,7,9,10,35,40,45]). The subjective preference of a decision
maker and a decision matrix are synthetically employed in hybrid
methods to determine attribute weights (e.g., [12,25/41]).
However, different subjective methods may elicit different attri-
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bute weights. There is no single method that can guarantee more
accurate attribute weights and further more satisfactory solutions
than others [9,10]. Different objective methods are designed on dif-
ferent principles, such as the principle of maximum contrast [9,10]
and the combination principle of maximum contrast and minimum
correlation [40]. When a decision maker has a lack of sufficient
data, knowledge, and experience, he or she will be unsure about
which principle is the best to generate the most appropriate
attribute weights and further the most satisfactory solution. To
guarantee the most satisfactory solution for the decision maker
in this situation, all attribute weights in a feasible or predefined
weight space rather than a set of attribute weights generated by
a specific method should be considered. More specifically, the deci-
sion maker would prefer one alternative supported by more sets of
attribute weights to be the best to the others in the satisfactory
solution. Such a solution is called a robust solution based on
unknown attribute weights in this study.

To generate a robust solution, except attribute weights, the
assessments of a decision maker need to be flexibly modeled. In
a real situation where data for assessing alternatives against crite-
ria are partially or completely unavailable, or the knowledge of the
decision maker for alternative evaluation is not sufficient, the
decision maker is more likely to give uncertain (or imprecise)
assessments. To model various kinds of uncertainties such as
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ignorance, fuzziness, interval data, and interval belief degrees in a
unified format, the evidential reasoning (ER) approach was devel-
oped in the 1990s. It has been under development in recent years
[6,19,44,50,54-56] to uniformly solve uncertain MADM problem:s.
In particular, precise and interval numbers can be handled in the
ER approach by converting them into distributed assessments
[44], similar to the conversion of machine measurements into
subjective assessments in the evaluation of new product develop-
ment [24]. The above analysis shows that the extension of the ER
approach to model and solve uncertain MADM problems with
unknown attribute weights is a new and significant exploration,
which is different from most existing MADM methods (e.g.,
[1,3,11,23,49,58]).

For this purpose, we firstly identify which alternatives can
become the best with the support of at least one set of attribute
weights. Then, the robustness of each identified alternative is
measured from two perspectives, i.e., the optimal situation of the
alternative and the insensitivity of the alternative to a variation
in attribute weights, which is used to compare the identified alter-
natives. The iterations of the two steps are intended to develop a
robust ER (RER) approach to generate a robust solution in the ER
context.

The main contributions of this paper include the following: (1)
the identification of alternatives that can become the best based on
unknown attribute weights; (2) the measurement of robustness of
each identified alternative from two perspectives; and (3) the
development of the RER approach.

The rest of this paper is organized as follows. Section 2 presents
the preliminaries related to the RER approach. Section 3 introduces
the RER approach. Section 4 presents an investigation regarding car
performance assessment to demonstrate the applicability and
validity of the RER approach. Section 5 compares the RER approach
with the ER approach and other objective methods of determining
attribute weights to reveal the advantages of generating a robust
solution. Finally, this paper is concluded in Section 6.

2. Preliminaries
2.1. ER approach to solving MADM problems

For the convenience of describing the RER approach, in the
following we introduce basic notations and the solution process
of the ER approach.

Suppose that a MADM problem has M alternatives aq
(I=1,...,M) and L attributes e; (i=1,...,L). The relative weights
of the L attributes are denoted by w = (w;,w,,...,w;) such that
0<w;<1 and S5, w; = 1. Assume that Q={H;,H,,...,Hy} de-
notes a set of assessment grades. The M alternatives are assessed
on the L attributes using H, (n=1,...,N) in the ER approach. If an
alternative q, is assessed to a grade H, on an attribute e; with a be-
lief degree of f,(q;), the assessment can be expressed by a belief
distribution B(ei(a;)) = {(Hy, Bnia@)), n=1,...,N; (2, Baia))}, where
Bas(@) =0, N, fri(a) <1, and o (a) =10, fuia) de-
notes the degree of global ignorance.

To generate a solution in the ER approach, the assessments
B(e(a)) (i=1,...,L, I=1,...,M) are aggregated as B(y(a;)) = {(H,,
Bn(a@)), n=1,...,N; (2, Bo(ay))} (I=1,...,M) using the analytical
algorithm [43], where Bo(a;) denotes the degree of aggregated glo-
bal ignorance. For the convenience of comparing the M alternatives
in the ER approach, B(y(a;)) (I=1,...,M) is combined with the util-
ities of grades u(H,) (n=1,...,N) such that 0=u(H;)<u(H,)<
---<u(Hy)=1 to produce the minimum and maximum expected
utilities of the alternative a; (I=1,...,M), ie., Umn(a) = ZLZ
Bal@)u(Hn) + (B1(a) + Bo(@))u(Hh)  and  Umax(a) = SN u(a)u
(Hn) + (By(@1) + Bo(ar))u(Hy). The maximal regret of the alternative

aq (I=1,...,M) is then calculated as R(q;) = max{0, max; .
{Umax(aj)} — Umin(a;)}. Finally, a rank-order of the M alternatives
as a solution to the MADM problem is generated by means of
R(a))(I=1,...,M) and the minimax regret approach (MRA) [44]. De-
tails regarding the MRA can be found in [44].

2.2. Compatibility between two assessments

The assessments B(eia;)) (i=1,...,L, I=1,...,M) are quasi-
Bayesian belief structures (BSs), as presented above, so a
compatibility measure between two BSs can be used to measure
the compatibility between two assessments. The compatibility
measure is given as follows.

Definition 1. Let m be a BS on @ ={H;,H>,...,Hy}. Its associated
pignistic probability function BetP(m) in the transferred belief
model is defined as

1. _mA)
AQ;M/EA ‘A| 1- m(®)7

where w can be Hy,H,, ..
A.

BetP(m)(w) = m(g) # 1,

., or Hy, and |A]| is the cardinality of a subset

BetP(m) can be extended as a function on 2%, i.e.,

Betp(m)4) = Y- AP

The transformation from m to BetP(m) is named as the pignistic
transformation.

VAC Q.

Definition 2. Let m; and m, be two BSs on Q = {H;,H>,...,Hy}, and
BetP; and BetP, be their associated pignistic probability functions,
respectively. Then

difBetP(m;, m,) = rAna!)z((\BetPl (A) — BetP,(A)])
c

is called the distance between betting commitments of the two BSs.

Definition 3. Let m; and m, be two BSs on Q = {Hy,H>,...,Hy}, and
BetP; and BetP, be their associated pignistic probability functions,
respectively. Suppose A = {w|w € Q, BetP;(w) = BetP,(w) > 0}
where A is a subset of , then EP(m;) = A and EP(m,) = A are called
all equal-pignistic-valued elements of m; and m,, respectively.

Definition 4. Let m; and m, be two BSs on Q={Hq,H,,...,Hy},
BetP; and BetP, respectively be their associated pignistic probabil-
ity functions, BetPR; ={BetP;(Hy),...,BetP{(Hy)} and BetPR, =
{BetP5(H,),...,BetP,(Hy)} respectively be their pignistic transfor-
mation results, EP(m;) and EP(m;) respectively be their equal-
pignistic-valued elements, and pmg(&f)(m,, my) be the mass of
uncommitted belief when combining BetPR; and BetPR, with
Dempster’s rule including no contribution completely from
EP(my) and EP(m;). Then, pm(&)(mq, my) is defined as

pm, (&) (my,my) = BetPR; (w1)BetPR;(ws)
W1 EQWH QW NWy =

- > BetPR; (w1 )BetPR, (w,).

wy €EP(my ),wp €EP(my),winwy =

Definition 5. Let m; and m, be two BSs, pm.(Zf)(m;, m,) be the
mass of uncommitted belief as described in Definition 4, and
difBetP(m,, my) be the distance between their betting commit-
ments as described in Definition 2. Then, a compatibility measure
between m; and m, is defined as
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