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In this paper, we propose a novel type of kernel least mean square algorithm with regularized structural
risk for online learning. In order to curb the continuous growing of kernel functions, a new dictionary
selection method based on the cumulative coherence measure is applied to perform the sparsification
procedure, which can obtain a dictionary with diagonally dominant Gram matrix under certain condi-
tions. On the updating of the kernel weight, the linear least mean square algorithm is generalized into
the reproducing kernel Hilbert space (RKHS) with minimized updating structural risk and it results in

fg?r' nweirgj;tho d a kernel regularized least mean square (KRLMS) algorithm. A simplified version of the KRLMS algorithm
Dictionary is also presented by applying only partial updating information to train the algorithm at each iteration,

which reduces the computational complexity. Theoretical analysis of their convergence issues is
examined and variable learning rates are adopted in the training process which can guarantee the weight
convergence of the algorithm in terms of a bounded measurement error. Several experiments are carried
out to prove the effectiveness of the proposed algorithm for online learning compared to some existing

Cumulative coherence
Diagonally dominant
Weight convergence

kernel algorithms.
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1. Introduction

Kernel methods have been widely applied in nonlinear signal
processing applications in the reproducing kernel Hilbert space
(RKHS). The basic idea is the use of Mercer kernels which
nonlinearly transform the original input feature into a high or even
infinite dimensional RKHS. In such a transformed feature space, the
solution is linear in the RKHS [1]. The popular “kernel trick” makes
the inner product between two high-dimensional transformed
features able to be obtained easily and it makes the kernel methods
more efficient. The well developed kernel methods include support
vector machines (SVMs) [2-4], support vector regression (SVR)
[5,6], Gaussian process theory |[7], different kinds of kernel
least mean square algorithms [7,8]. These kernel methods have
been popularly used for batch learning or online learning in
various applications. In a batch learning model, the computational
complexity and memory required usually grow superlinearly with
the number of training samples. However, the high complexity of
these batch learning methods makes them unsuitable for online
learning.

In kernel online learning context, to reduce the computational
complexity, the sparsification method was designed to prevent
the size of kernel functions being too large. In the last decade,
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different sparsification methods have been proposed. They aimed
to select a compact dictionary with finite size using different
criteria including the novelty criterion [9,10], the approximate
linear dependency (ALD) criterion [11], the coherence-based
criterion [12], the information theoretic criterion [10,13], the
significance-based criterion [14]. By relying on these sparsification
methods, many kernel algorithms were proposed for online
learning. These algorithms include the kernel normalized least
mean square (KNLMS) algorithm [12], the kernel affine projection
(KAP) algorithm [12,15], the kernel recursive least square (KRLS)
algorithm [11], the quantized kernel least mean square (QKLMS)
algorithm [16], where linear least square algorithms were
generalized into the RKHS and the solutions became the linear
combinations of selected kernel functions. For sparse multi-kernel
learning, a novel method integrating feature selection and
multi-kernel learning were developed for sparse coding [17]. In
online learning settings, the training samples are available one
by one and at each training iteration, only one training sample is
present to update both the dictionary and kernel coefficients of
the algorithm. Underlying this learning fashion, the existing
sparsification rules update the dictionary by deciding whether
adding a new kernel function characterized by the new training
sample or not while remaining the old dictionary members
unchanged. They are kind of constructive methods without
applying the pruning method, where the old dictionary member
may be deleted [18].
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Previously, we developed sparsification methods for online ker-
nel learning such as the significance-based method, which was
incorporated into the famous recursive least square algorithm
[14], and the mutual information concept based sparsification rule
[13]. Both are type of constructive sparsification methods. In this
paper, a novel sparsification rule is proposed for dictionary selec-
tion which combines the constructive and the pruning methods
for kernel online learning. A cumulative coherence concept is
adopted to measure the sparsity of a dictionary as an extension
of the coherence concept, which can provide a deeper measure of
the dictionary [19,20]. In sparse approximation problems, a dictio-
nary with small enough cumulative coherence guarantees that the
desired signal can be constructed by the sparse signal exactly
[21,22]. In kernel algorithms, if the cumulative coherence of a dic-
tionary is less than one, it is obvious that its Gram matrix is diag-
onally dominant and such a matrix is nonsingular and invertible
[23]. The proposed sparsification method is based on the cumula-
tive coherence measure. It is a constructive and pruning combined
method with two stages. First, it examines whether the dictionary
can be expanded with a new kernel function; otherwise, it decides
whether to replace one of the old dictionary member with the new
kernel function. In this way, the old dictionary member can be re-
placed if it cannot represent the new data well. It is shown that the
selected dictionary satisfies several important properties in sparse
approximation problems.

Based on the selected dictionary, the least mean square (LMS)
algorithm is extended into the RKHS and a kernel regularized least
mean square (KRLMS) algorithm is derived. The novel contribution
is that the kernel algorithm is updated under a regularization that
the change of its structure risk in RKHS is minimized at each train-
ing iteration. Motivated by the partial update linear algorithm (see
[24,25] and therein), a method to reduce the complexity in algo-
rithm updating with only part of its parameters updated at each
step, we propose a complexity reduced partial information up-
dated KRLMS (PIU-KRLMS) algorithm. It uses only part of the
updating information to tune itself at each iteration. Furthermore,
to speed up the convergence of the algorithm, a novel method
based on the bound of the measurement error is applied to
determine the variable learning rates for both the KRLMS and the
PIU-KRLMS algorithms, which can make a tradeoff between the
algorithm’s convergence speed and accuracy.

The organization of the rest of this paper is as follows. In Sec-
tion 2, some fundamental ideas of kernel methods are discussed.
In Section 3, the proposed dictionary selection method is presented
and some of its properties are exploited. In Section 4, the KRLMS
and the PIU-KRLMS algorithms are proposed followed by the theo-
retical analysis of their weight convergence. In Section 5, experi-
mental results of several examples are presented and finally
conclusion is given in Section 6.

Some notations used throughout the paper are as follows:

x, x(i) column vector, the i(th) element of x,
X, X(i,j) matrix, the entry of X in the i(th) row and j(th) column,

X(:,i), X" the i(th) column of X, the sub-matrix of X with the
i(th) row and column deleted.

2. Fundamentals of kernel methods

By using a nonlinear mapping function, which maps the low
dimensional feature space into the high dimensional RKHS, linear
models can be found in the RKHS for many applications. Suppose
that A is a Hilbert Space and (-, ),, denotes the inner product in
the Hilbert Space. A mapping function ¢(-) will transfer the input
feature space ¢ to a high dimensional feature space in H. The inner

product between two input features u; on the point u; becomes
[26]:

((/’(ui)’ (p(uj)>7~t = <K(ui7 ')7 K(uj’ ))H = K(uivu]')v (1)

where k(-,-) is a positive definite and symmetric kernel function.
The inner product of two feature vectors in the high dimensional
feature space can be easily computed by (1) without knowing the
exact function of ¢(-), which is usually called the kernel trick. The
commonly used kernels include the Gaussian kernel x(u;,u;) =

exp (—Hui - u}-HZ/ZGZ), the Laplacian kernel k(u;, u;) =exp
(—|lui — uj|| /o) with o being the kernel width and the polynomial
kernel x(u;, ;) = (7 +ufw;)?, with n > 0 and g € N.

2.1. Kernel methods

Given the feature input-desired output sequence {u;, dj};zl, the
problem is to find a function f(-) to reconstruct the corresponding
output fi(u;) = (f;(-), k(-,u)),,. By virtue of the representer theorem
[26], the function f;(-) can be expressed as a linear form in the RKHS

fit) = 0" (00(), ()

where o(t) is the weight coefficient and it can be expressed as a lin-
ear combination of the obtained feature vectors in the RKHS till the
(t)th training iteration

o) = up(w). 3)
=1

Using the kernel trick, we have

t
Fel) =Y ol w), (4)

=
where (-, u;) is a kernel function with its center being the feature
input vector u; and o; is the kernel coefficient. As a result, the
function can be estimated implicitly by the feature input vectors
with a Mercer kernel function. The problem of model (4) is that
the number of kernel functions grows continuously, with its
number equal to the number of training samples. If sparsification
methods [10-12] are applied to reduce the kernel function number
and suppose that a sparse dictionary D; = {K(c1,-),...,K(Cn,,-)}
with m. members is obtained and {¢;}}", is selected from the feature

input vectors of training samples {u;};_;, the estimated function
becomes

) =Y () = Kea, (5)
=

where the number of kernel functions is limited to the size of the
dictionary, with K; = [x(cy,-),...,K(cm,,-)] representing the kernel
functions and & = [y, .. ., %y, )" being the kernel weight. The Gram
matrix of the dictionary can be expressed as G; = (Kt)TI(t in RKHS
and we have G.(i,j) = K ()K.(j) = (K.(i), K:(j)),-

3. A new dictionary selection method

As shown in the model (4), the kernel function number in kernel
methods without sparse representation will increase with the
number of training samples and this makes its computational
complexity very high and a large memory is required for the
information storage. However, with a sparsification procedure, its
sparse model (5) is much less complicated in both computational
or structure complexity. For most of the kernel online learning
algorithms, one of the key issue is how to select a representable
dictionary D, to characterize the kernel model.
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