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tency and validity.

This paper introduces a framework that allows to mitigate the impact of class imbalance on most scalar
performance measures when used to evaluate the behavior of classifiers. Formally, a correction function
is defined with the aim of highlighting those classification results that present moderately higher predic-
tion rates on the minority class. Besides, this function punishes those scenarios that are biased towards
the majority class, but also those that are strongly biased to favor the minority class. This strategy
assumes a typical imbalance task, in which the minority class contains the most relevant samples to
the research purposes. A novel experimental framework is designed to show the advantages of our
approach when compared to the standard use of well-established measures, demonstrating its consis-
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1. Introduction

Most of traditional learning methods assume that the classes of
the problem share similar prior probabilities and/or misclassifi-
cation costs. However, in many real-world tasks the ratios of prior
probabilities between classes are significantly skewed. This situa-
tion is typically known as the imbalance problem. A two-class data
set is said to be imbalanced when one of the classes (the minority
one) is heavily under-represented regarding the other class (the
majority one) [1]. Paradoxically, the minority class is often the
most important and usually the one with the highest misclassifi-
cation costs. Some typical real-life applications where this problem
arises are prediction of microarray gene expression [2], prediction
of corporate bankruptcy [3] and credit risk [4], fraud detection in
mobile telephone communications [5] and text categorization
[6]. Because of examples of the minority and majority classes usu-
ally represent the presence and absence of rare cases respectively,
they are also referred to as positive and negative examples.

As pointed out by many authors [7-10], the use of plain accuracy
and/or error rates to evaluate the performance of classifiers in imbal-
anced domains might produce misleading conclusions, since they do
not take misclassification costs into account, are strongly biased to
favor the majority class, and are non-sensitive to class skews.
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A plethora of alternative scalar and graphical methods have
been proposed to properly assess classification performance on
imbalanced scenarios. Graphical approaches depict trade-offs be-
tween two or more evaluation perspectives, allowing a richer anal-
ysis of results but making the comparison of learning algorithms a
non-trivial issue. Some well-studied examples are the Receiver
Operating Characteristic (ROC) curve [11,12], the Precision-Recall
(P-R) curve [13], cost curves [14] and the Bayesian Receiver Oper-
ating Characteristic (B-ROC) curve [15]. A state-of-the-art of graph-
ical evaluation methods can be found in [16].

Conversely, scalar methods summarize the entire performance
information in a single measurement, which makes easier the com-
parison of different classifiers although it could mask subtle details
of their behaviors. Three representative examples are the area un-
der the ROC curve [11], the geometric mean of class accuracies [17]
and the f-measure [18]. Despite their merits, these metrics present
some weaknesses that could lead to incorrect conclusions [19,20].
A common one is that they do not reflect the sign of the bias of a
classification result. For instance, some of the most popular mea-
sures used in imbalanced binary domains produce identical out-
comes when evaluating two opposite classification scenarios (the
two class performances are swapped with each other), which
generally becomes a critical shortcoming due to the asymmetric
misclassification costs for the different classes. Since the bias cor-
rection function proposed here fine-tunes numerical performance
assessments, this paper focuses on scalar measures.
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Lately, Garcia et al. [21] introduced a performance assessment
method that pursues to correct the aforementioned effects of
imbalance. This consists of a weighting factor that rewards out-
comes with higher prediction rates on the minority class. However,
the use of a fixed weight in each classification task may entail two
important limitations: (i) the resulting static solution is unable to
adapt to specific classification scenarios and (ii) it rewards indis-
criminately any classifier bias that favors the minority class.

The present paper reformulates the performance evaluation
method proposed by Garcia et al. [21] with the aim of overcoming
its weaknesses. In brief, the new proposal consists of a bias correc-
tion function that modulates the operation of any standard scalar
measure by means of an adaptive weighting factor. More specifi-
cally, the main contributions of this model are:

1. The correction function favors only moderate biased results
towards the minority class, but penalizes any strong bias.

2. The weighting factor is now a dynamic parameter specifi-
cally computed to fit each particular classification scenario.

Since the “best” evaluation performance measure depends on
many factors [22,20], their comparison becomes a complex task
and there does not exist a standard methodology. A novel two-le-
vel experimental framework is here proposed. First, a correlation
study between a number of performance metrics and a series of
misclassification costs [23] is carried out. Second, a non-parametric
statistical test is addressed to demonstrate that the measures
perform significantly different. To the best of our knowledge, no
previous work has exploited this methodology to compare perfor-
mance measures in imbalanced domains.

The correction function has been tested over two simple mea-
sures that can be deemed as opposite ends of the performance
evaluation spectrum on imbalanced problems. These are the clas-
sification accuracy, which appear to be the paradigm of biased
behavior, and the geometric mean of individual class rates (one
of the simplest way of unbiased measuring a classification result).
The underlying hypothesis is that if the correction function prop-
erly tunes these two extremes, it will also be able to correct any
other midway approach.

2. Performance evaluation

For a two-class problem, the decision made by a classification
model over a set of objects can be expressed in the form of a
2 x 2 confusion matrix where columns represent the predicted
class and rows indicate the actual class (see Table 1).

Several straightforward indices can be easily formulated from
such a confusion matrix, revealing results on the positive and neg-
ative classes separately. Some examples are: (i) True positive rate
(also referred to as recall or sensitivity) is the percentage of positive
examples that are correctly classified, TPr = TP/(TP + FN); (ii) True
negative rate (or specificity) is the percentage of negative examples
that are correctly classified, TNr = TN/(TN + FP); (iii) False positive
rate is the percentage of negative examples that are misclassified,
FPr = FP/(TN + FP); (iv) False negative rate is the percentage of po-
sitive examples that are misclassified, FNrate = FN/(TP + FN); and
(v) Precision (or purity) is defined as the percentage of samples that
are correctly labeled as positive, Prec = TP/(TP + FP).

Table 1
Confusion matrix for a two-class problem.

Predicted positive Predicted negative

Positive class
Negative class

True Positive (TP)
False Positive (FP)

False Negative (FN)
True Negative (TN)

From these simple indices, it is possible to derive more power-
ful metrics based on combinations of those error/accuracy rates
measured separately on each class. For example, the classification
accuracy (Acc) evaluates the effectiveness of the learner by its per-
centage of correct predictions, Acc = (TP + TN)/(TP + FN + TN+
FP). However, empirical and theoretical evidences show that this
measure is strongly biased with respect to data imbalance
[10,24,25]. This has raised a key question about how to evaluate
the performance of classifiers affected by the class imbalance prob-
lem. Early attempts have consisted of taking well-established per-
formance evaluation methods from several research domains, such
as signal decision theory, image retrieval, and medical decision
making. Some representative examples are the f-measure
(fi = (2 - TPr - Prec)/(Prec + TPr) [18]), the geometric mean of the
true positive and true negative rates (Gm = +/TPr - TNr [26]), and
the area under the ROC curve (AUC = (TPr + TNr)/2 [27]).!

Apart from these widely-known metrics, many other methods
have more recently been proposed with the aim of reducing the
bias of the accuracy. Ranawana and Palade [28] introduce the opti-
mized precision, which estimates the difference between the accu-
racy and a relationship index that computes how balanced both
class accuracies are. Based on this work, Hossin et al. [29] propose
the optimized accuracy with extended recall-precision, which
builds the relationship index by using precision and recall. Cohen
et al. [30] formulate the mean class-weighted accuracy, which as-
signs different weights to the true positive and true negative rates
in order to compensate for class imbalance. In the same fashion of
weighting metrics, Timotius and Miaou [31] introduce the arith-
metic means. Weng and Pong [32] propose a method to compute
AUC with a cost bias, which gives more weights to the areas close
to the top of the ROC graph.

In the credit scoring realm, Kennedy et al. [33] propose a partic-
ular adaption of the f~measure called harmonic mean, which em-
ploys specificity instead of precision. Batuwita and Palade point
out that in biomedical imbalanced data sets is more important to
increase the true negative rate than the true positive rate [34].
Accordingly, they propose the adjusted geometric mean by com-
bining the geometric mean and the proportion of negative exam-
ples of the data set, thus allowing to achieve high true negative
rates while keeping low reductions of the true positive rates. Re-
cently, Maratea et al. [35] introduce the adjusted f-measure, which
can be viewed as a geometric mean of f~-measure values computed
for the two classes by considering different weights.

Although these measures have demonstrated to be suitable for
problems with skewed class distributions and unequal classifica-
tion errors costs [8,12,36-38], most of these performance mea-
sures do not distinguish between contributions of individual
classes to the overall performance. This means that they do not
take into consideration the magnitude and direction of differences
between the accuracies measured separately on each class (the
classifier bias). The importance of this comes from the different
misclassification costs, which are very usual in the context of
imbalance. As already said, in many real-life problems, it may be
convenient to promote classification results with higher perfor-
mance on the minority class, provided that the importance of the
majority class is not underestimated.

3. An adaptive correction function for performance evaluation

This section proposes a meaningful improvement of the Index
of Balanced Accuracy (IBA) introduced by Garcia et al. [21]. IBA
weights a standard performance measure, in order to compensate

1 This formula of AUC, which is also called balanced accuracy, is valid when only
one run is available.
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