
Training Lagrangian twin support vector regression via unconstrained
convex minimization

S. Balasundaram ⇑, Deepak Gupta
School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi 110067, India

a r t i c l e i n f o

Article history:
Received 3 June 2013
Received in revised form 19 January 2014
Accepted 19 January 2014
Available online 27 January 2014

Keywords:
Generalized Hessian
Gradient based iterative methods
Smooth approximation
Support vector regression
Twin support vector regression
Unconstrained convex minimization

a b s t r a c t

In this paper, a new unconstrained convex minimization problem formulation is proposed as the
Lagrangian dual of the 2-norm twin support vector regression (TSVR). The proposed formulation leads
to two smaller sized unconstrained minimization problems having their objective functions piece-wise
quadratic and differentiable. It is further proposed to apply gradient based iterative method for solving
them. However, since their objective functions contain the non-smooth ‘plus’ function, two approaches
are taken: (i) either considering their generalized Hessian or introducing a smooth function in place of
the ‘plus’ function, and applying Newton–Armijo algorithm; (ii) obtaining their critical points by func-
tional iterative algorithm. Computational results obtained on a number of synthetic and real-world
benchmark datasets clearly illustrate the superiority of the proposed unconstrained Lagrangian twin
support vector regression formulation as comparable generalization performance is achieved with much
faster learning speed in accordance with the classical support vector regression and TSVR.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Support Vector Machines (SVMs) introduced by Vapnik [31] are
extremely powerful kernel-based machine learning tools applica-
ble for binary classification and regression problems. SVM has been
successfully applied to many real-world classification problems
ranging from image classification [21], text characterization [13],
biomedicine [3,10] to bankruptcy prediction [30].

Though it owns better generalization classification performance
over other machine learning methods such as artificial neural
networks (ANNs), one of the main challenges of SVM is its high
learning cost, i.e. O(m3) where m is the number of training data
points. To improve its learning speed, during the past years, mul-
ti-hyperplane SVM classifiers have been proposed in the literature
[12,19,22,25] wherein non-parallel hyperplanes are constructed
instead of a single hyperplane as in the classical SVM. The earlier
contribution in this direction is the generalized eigenvalue
proximal SVM (GEPSVM) proposed by Mangasarian and Wild
[19]. In their approach, non-parallel hyperplanes are constructed
in which data points of each class will be proximal to one of its
two non-parallel hyperplanes. In the sprit of GEPSVM, Jayadeva
et al. [12] proposed twin SVM (TWSVM) for binary classification.
TWSVM seeks two non-parallel hyperplanes by solving a pair of

quadratic programming problems (QPPs) of smaller size than a sin-
gle large one as in the classical SVM. Since the learning speed of
TWSVM is approximately four times faster than the classical
SVM [12] and furthermore it owns improved generalization ability
in comparison to SVM and GEPSVM, it becomes one of the most
attractive methods for classification. For related works on the
extension/improvement of TWSVM, see [14,15,27].

Recently, inspired by the work of TWSVM, Peng [23] proposed
twin support vector regression (TSVR) in which the unknown
regressor is estimated by constructing a pair of non-parallel e-
insensitive down- and up-bound functions. Similar to TWSVM,
the non-parallel bound functions are obtained by solving a pair
of dual QPPs of smaller size than the single large one of the
classical support vector regression (SVR). Empherical results show
that TSVR obtains good generalization with the added advantage of
faster learning speed in comparison to SVR [23]. Formulating TSVR
as a pair of strongly convex unconstrained minimization problems
in primal and employing smooth technique, a new SVR called
smooth twin support vector regression (STSVR) has been proposed
in [4] where its solution has been obtained using Newton-Armijo
algorithm [16,17]. For the study of a simple and linearly
convergent Lagrangian TSVR algorithm, the interested reader is
referred to [1]. Again, on the formulation of TSVR as a pair of
linear programming problems, see [35] and also for other
variants of TSVR, see [26,34]. Finally, on an interesting robust
algorithm for classification problems with outliers or noises, we
refer [33].
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Motivated by the works on Lagrangian TSVR [1] and the Newton
approach for the dual SVM classification formulation of [36], a new
unconstrained Lagrangian TSVR (ULTSVR) formulation has been
proposed in this study. However, since its objective function
contains a term having non-smooth ‘plus’ function, two gradient
based approaches are assumed to solve the proposed minimization
problem: (i) either considering its generalized Hessian [8,11] or
introducing the smooth approximation function of [16] in place of
the non-smooth ‘plus’ function, and then applying Newton-Armijo
algorithm; (ii) obtaining its critical point using functional iterative
method. The convergence of the Newton-Armijo algorithm and its
finite termination will follow directly from the results of [16,17].
Under a sufficient condition, the linear convergence of the proposed
functional iterative method is proved in this paper. Finally, the
effectiveness of the proposed ULTSVR problem is demonstrated by
performing experiments on a number of interesting synthetic and
real-world datasets and comparing their results with SVR and TSVR.

Throughout in this work, all vectors are assumed as column
vectors. The inner product of two vectors x, y in the n-dimensional
real space Rn is denoted by: xty, where xt is the transpose of x. For
any vector x = (x1,. . ., xn)t 2 Rn, the plus function x+ is defined as:
(x+)i = max{0,xi} and i = 1, . . ., n. The 2-norm of a vector x and a ma-
trix Q will be denoted by kxk and kQk respectively. We denote the
vector of ones of dimension m by e and the identity matrix of
appropriate size by I. If f is a real valued function of the variable
x = (x1, . . ., xn)t 2 Rn then its gradient vector and Hessian matrix
are denoted by: rf = (@f/@x1,. . ., @f/@xn)t and r2f = (@2f/@xi@xj)i, j=1,

. . ., n respectively.
The paper is organized as follows. In Section 2, the classical SVR

and TSVR are reviewed. The proposed unconstrained TSVR problem
in its dual form and three iterative methods of solving it are de-
scribed in Section 3. Numerical experiments have been performed
on a number of synthetic and real-world datasets and their results
have been compared with that of SVR and TSVR in Section 4 and
finally the conclusions and future works are drawn in Section 5.

2. Related work

In this section, the classical SVR and its variant namely twin SVR
are briefly described.

Assume that a set of training samples {(xi, yi)}i=1, 2, . . ., m is given
in which yi 2 R is the observed value corresponding to the input
data point xi 2 Rn. Further, let us suppose that the training data
points be represented by a matrix A 2 Rm�n whose ith row is taken
to be the row vector xt

i and the vector of observed values be de-
noted by y = (y1,. . ., ym)t.

2.1. Support vector regression (SVR) formulation

In the classical SVM for regression, the non-linear regression
estimating function f: Rn ? R is assumed to be of the form:

f ðxÞ ¼ wtuðxÞ þ b;

where u(.) is a non-linear mapping which takes the input data
points into a higher dimensional feature space, w is a vector in
the feature space and b is a scalar threshold. The e-insensitive
SVR solves the unknowns w and b as the solution of the constrained
QPP given below [5,31]:

min
w;b;n1 ;n2

1
2

wtwþ Cðetn1 þ etn2Þ

subject to

yi �wtuðxiÞ � b 6 eþ n1i; wtuðxiÞ þ b� yi 6 eþ n2i

and n1i, n2i P 0 for i = 1, 2, . . ., m,
where n1 = (n11,. . ., n1m)t, n2 = (n21,. . ., n2m)t are vectors of slack

variables and C > 0, e > 0 are input parameters.

Rather than solving the primal problem considered above, by
introducing Lagrange multipliers u1 = (u11,. . ., u1m)t and
u2 = (u21,. . ., u2m)t in Rm and applying the kernel trick [5,31], i.e.
taking:

kðxi;xjÞ ¼ uðxiÞtuðxjÞ

where k(., .) is a kernel function, its dual problem of the following
form is solved:

min
u1 ;u2

1
2

Xm

i;j¼1

ðu1i�u2iÞkðxi;xjÞðu1j�u2jÞþe
Xm

i¼1

ðu1iþu2iÞ�
Xm

i¼1

yiðu1i�u2iÞ

subject to

Xm

i¼1

ðu1i � u2iÞ ¼ 0 and 0 6 u1;u2 6 Ce:

In this case, the decision function f(.) will become [5,31]: For any in-
put data x 2 Rn,

f ðxÞ ¼
Xm

i¼1

ðu1i � u2iÞkðx;xiÞ þ b:

2.2. Twin support vector regression (TSVR) formulation

Motivated by the work of TWSVM [12] for binary classification
problems, twin support vector regression (TSVR) was proposed in
[23] wherein two non-parallel functions are constructed as estima-
tors for the e–insensitive down- and up-bounds of the unknown
regression function. Unlike solving a single QPP having 2m number
of constraints where m being the number of input data points, a
pair of QPPs each having m number of linear inequality constraints
is solved in TSVR. This strategy makes the training of TSVR faster
than the classical SVR [23].

Suppose, let the down- and up-bound regressors for the linear
TSVR in the input space be expressed as: For any x 2 Rn,

f1ðxÞ ¼ wt
1xþ b1 and f 2ðxÞ ¼ wt

2xþ b2 ð1Þ

respectively, where w1, w2 2 Rn and b1, b2 2 R are unknowns. Then,
the linear TSVR algorithm determines the down- and up-bound
regressors (1) as the solutions of the following pair of QPPs defined
by [23]:

min
ðw1 ;b1 ;n1Þ2Rnþ1þm

1
2
ky � e1e� ðAw1 þ b1eÞk2 þ C1etn1

subject to

y � ðAw1 þ b1eÞP e1e� n1; n1 P 0 ð2Þ

and

min
ðw2 ;b2 ;n2Þ2Rnþ1þm

1
2
ky þ e2e� ðAw2 þ b2eÞk2 þ C2etn2

subject to

ðAw2 þ b2eÞ � y P e2e� n2; n2 P 0 ð3Þ

respectively, where C1, C2 > 0; e1, e2 > 0 are input parameters and n1,
n2 are vectors of slack variables in Rm.

Remark 1. The optimization problem (2) can be equivalently
written as a minimization problem of the form

min
ðw1 ;b1Þ2Rnþ1

1
2

Xm

i¼1

ðyi � f1ðxiÞ � e1Þ2 þ C1

Xm

i¼1

maxf0;�ðyi � f1ðxiÞ � e1Þg;

whose objective function represents the training error generated by
the whole training samples in approximating the e-insensitive
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