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a b s t r a c t

The paper considers the problem of optimal sequential design for graphical models. Oil and gas explora-
tion is the main application. Here, the outcomes at prospects or reservoir units are highly dependent on
each other. The joint probability model for all node variables is considered known. As data is collected,
this probability model is updated. The sequential design problem entails a dynamic selection of nodes
for data collection, where the goal is to maximize utility, here defined via entropy or total expected profit.
With a large number of nodes, the optimal solution to this selection problem is not tractable. An approx-
imation based on a subdivision of the graph is considered. Within the small clusters the design problem
can be solved exactly. The results on clusters are combined in a dynamic manner, to create sequential
designs for the entire graph. The merging of clusters also gives upper bounds for the actual utility. Several
synthetic models are studied, along with two real cases from the oil and gas industry. In these examples
Bayesian networks or Markov random fields are used. The sequential model updating and data collection
strategies provide useful guidelines to policy makers.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Our interest is a sequential selection problem over dependent
variables. The main motivation is to construct policies for oil and
gas exploration, where the outcomes at prospects are dependent
by spatial proximity or by common geological mechanisms. The
probability of success for any exploration well is then highly influ-
enced by the outcomes at other prospects.

More generally the challenge is to construct an optimal dy-
namic design of nodes in a graph. For instance, in the situation with
a Bayesian Network (BN) or a Markov Random Field (MRF) we eval-
uate which variables are most useful to observe. We assume a fixed
probability model a priori. As we acquire data at nodes in the BN or
the MRF, the original probability distribution is updated, according
to Bayes rule. Relevant design questions are then: Which nodes are
more informative? Which sequence of nodes gives the best policy?
In the petroleum industry drilling wells is extremely costly, and
getting the right information is critical.

At each stage of the dynamic strategy, we choose to observe one
additional variable, or quit the search. If we acquire data at a node,
we incorporate the observation in the current (a priori) model to
compute the updated (a posteriori) model. For the next stage, the
updated model serves as a prior model, and so on. The sequential

decisions account for two aspects: (i) the immediate profit in terms
of monetary units or information gain by knowing the current var-
iable and (ii) the expected future benefits induced by the predictive
capacity, conditional on the current variable. These two aspects are
combined in a utility function. If the expected utility of choosing
one more node is too small, we stop collecting data. The trade off
between (i) and (ii) is related to more general explore or exploit
problems in decision making. An oil and gas company may want
to target the most lucrative prospects, but it is also important to
know the key variables, which give us the chance to make better,
informed, decisions at the later stages. The future values in (ii) then
play an important role in the utility function.

With our focus on oil and gas exploration we note some similar-
ities and differences with common spatial design problems, e.g.
Shewry and Wynn [27], Le and Zidek [18], and Zidek and Zimmer-
man [32]. The most common problem treated in the literature is to
allocate a fixed number of monitoring stations to improve overall
predictive performance in some sense. The selection is thus done
in the static manner, not allowing the decision maker to modify
her choices after observing the outcomes at the previously selected
spatial sites. In this paper we consider the dynamic decision prob-
lem, with one observation at a time and the ability to make
sequential decisions. Moreover spatial design problems the model
typically rely on Gaussian models. The current paper studies
graphical models with discrete outcomes at all nodes.

Our sequential design problem is a discrete optimization prob-
lem which is in theory solved via Dynamic Programming (DP). This
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method defines a forward–backward algorithm that constructs the
optimal sequences and the expected utility. Bickel and Smith [6]
present a DP algorithm tailored for our sequential design problem
with dependent oil and gas prospects. However, their approach is
not applicable when the number of variables gets too large. For
more than, say, 10 variables, we must instead look for approximate
strategies. The appropriate solution seems to be very case-specific.
See e.g. Powell [24] for more background. Various heuristic ap-
proaches are important for special applications, but it is very diffi-
cult to assess the properties of these solutions. For graphical
models it seems natural to utilize the structure. One approach is
to split the original graph in several disjoint clusters. This cluster-
ing idea was originally presented in Brown and Smith [7], who
solved the DP exactly for clusters, and combined the results to
approximate the expected utilities on the full-size graph, with
upper bounds.

Our main contribution in this paper is to use the clustering
strategies to construct sequential designs for BNs and MRFs. A crit-
ical element in the method is to compute the cluster-wise Gittins
index. This extends the original index pioneered by Gittins [12]
and Whittle [31] for so-called bandit problems, and studied by
Benkerhouf et al. [3] and Glazebrook and Boys [13] for oil and
gas exploration problems. We consider the sensitivity of cluster
orientation and size, and various levels of approximation in the
Bayes updating scheme. We use utility functions based on entropy
and more traditional cost/revenue aspects. The resulting sequential
prospect designs can work as a road map for the petroleum explo-
ration company. The presented methods are relevant for e.g. ma-
chine scheduling [2], medical treatments selection [9], real-time
strategy games [23], subset selection problems and more generic
search problems. The use of lattices and networks in decision mak-
ing has been successfully applied in decision theory, see Fenton
and Neil [11]. Finally, strategies based on clustering are typical in
many fields, when dealing with classification problems: for recent
cluster-based algorithms see Jain [14] and Karaboga and Ozturk
[15].

The paper develops in the following way: in Section 2 we give
the main ideas about sequential design, in Section 3 we discuss
how the splitting in clusters can help in building approximate
strategies, in Section 4 we provide results on synthetic examples,
in Section 5 we show results on real case studies.

2. Sequential design

A sequential strategy is illustrated in Fig. 1. Here, we initially
choose to drill one of three petroleum prospects, or nothing. If
we start by drilling prospect 3, the design criterion for the next
stage depends on the outcome of prospect 3. The decision is then
to choose among prospect 1 and 2, or quit.

We first introduce the statistical notation and assumptions re-
quired to frame this sequential design problem. We then outline
the theoretical solution given by DP. A small example is used to
illustrate the sequential strategies resulting from different utility
functions.

2.1. Notation and modeling assumptions

Consider N nodes, and let xi 2 {1, . . . ,ki}, i = 1, . . . ,N denote the
discrete random variables. Without loss of generality, we assume
ki = k possible states for all nodes i. In Fig. 1, k = 2 with oil or dry
outcomes. We represent the probabilistic structure for x = (x1, -
. . . ,xN) via a graph. For a BN defined by a directed acyclic graph
the joint distribution is

pðxÞ ¼
YN
i¼1

pðxijxpaðiÞÞ; ð1Þ

where pa(i) denotes the parent set of node i, which is empty for the
top nodes. Undirected graphs are defined via the full conditionals
over a neighborhood, or, by the Hammersley–Clifford theorem, via
a joint distribution over clique potentials. For a first-order MRF
[4] we use:

pðxÞ / exp b �
X
i�j

Iðxi ¼ xjÞ þ
XN

i¼1

aiðxiÞ
( )

; ð2Þ

where i � j denotes neighboring lattice nodes (north, east, south,
and west). The parameter b imposes spatial interaction, while the
ai(xi) terms include prior preferences about states at node i.

We assume known, fixed, statistical model parameters in
p(x), such as b and ai(xi) in (2) and the conditional probabilities
in (1). Associated with the probabilistic model we can of course
compute several attributes that are important for design purposes.

Assuming that we know the revenues or cost, denoted rj
i,

for outcomes xi = j, the decision value is

DVðiÞ ¼max 0;
Pk

j¼1rj
ipðxi ¼ jÞ

� �
; i ¼ 1; . . . ;N. This DV is useful for

decision making. It is non-zero only when the expected profit is
positive. The entropy (disorder) is defined by
H ¼ �

P
logðpðxÞÞpðxÞ ¼ �Eðlog pðxÞÞ, see e.g. Wang and Suen [29].

In our sequential design situation, we rely on the ability to ex-
tract the marginal probabilities at all nodes, and to update the
probability distributions when evidence is collected. Since we are
going to update the model at each stage of the sequential strategy,
for many different kinds of evidence, we require these computa-
tions to be reasonably fast. For BNs the updating of probabilities
can be done effectively by the junction tree algorithm [17]. MRFs
can similarly be updated by forward–backward algorithms, see
e.g. Reeves and Pettitt [26] and Tjelmeland and Austad [28].

Assume we can acquire data at one node in the graph, and
incorporate the outcome to get a posterior distribution. For the
next stage, this updated distribution serves as a prior distribution.
We can then select another node, acquire information, update the
probabilities, and so on. The sequential design of nodes is con-
structed by optimizing the expected utility, which means that we
integrate over all possible data when finding the optimal sequence.
In our case, the utility is based on monetary profits or entropy
reduction. One could of course imagine other selection criteria
here. Minimum entropy entails a dynamic design that attempts
to stabilize or minimize the uncertainty in the graph.

Let xi be the observable or evidence in node i = 1, . . . ,N. If node i
is not yet observed, we set xi = �. If we choose to observe node i,
xi is the actual outcome of the random variable xi at this node.
For instance, in a petroleum example, xi = 1 can mean that pros-
pect i has been drilled and found dry, xi = 2 if found gas, and
xi = 3 if oil. A priori, before acquiring any observables, we have
x = x0 = (�, . . . ,�). When we observe nodes, we put the outcomes
at the corresponding indices of the vector x. Say, if node 2 is se-
lected first, and observed in state x2 = x2 = 1, we set
x = (�,1,�, . . . ,�). At each stage, one more entry of x is assigned.
The posterior that is updated at every stage of the sequential de-
sign is generically denoted by p(xjx), with marginals p(xi = jjx),

Fig. 1. Decision tree for a simple 3-nodes discrete example with two possible
outcomes (oil or dry) per node.
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