Knowledge-Based Systems 49 (2013) 10-21

Contents lists available at SciVerse ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Efficient algorithms for frequent pattern mining in many-task
computing environments

@ CrossMark

Kawuu W. Lin*, Yu-Chin Lo

Department of Computer Science and Information Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan

ARTICLE INFO ABSTRACT

Article history:

Received 17 March 2012

Received in revised form 17 March 2013
Accepted 8 April 2013

Available online 28 April 2013

The goal of data mining is to discover hidden useful information in large databases. Mining frequent pat-
terns from transaction databases is an important problem in data mining. As the database size increases,
the computation time and required memory also increase. Because the number of items increases, the
user behaviours also become more complex. To solve the problem of increasing complexity, many
researchers have applied parallel and distributed computing techniques to the discovery of frequent pat-
terns from large amounts of data. However, most studies have focused on improving the performance for
a single task and have neglected the many-task computing issue, which is important in the current cloud-
computing environments. In these environments, an application is often provided as a service, e.g., the
Google search engine, implying that many users can use it simultaneously. In this paper, we propose a
set of algorithms, containing the Equal Working Set (EWS) algorithm, the Request On Demand (ROD)
algorithm, the Small Size Working Set (SSWS) algorithm and the Progressive Size Working Set (PSWS)
algorithm, for frequent pattern mining that provides a fast and scalable mining service in many-task com-
puting environments. Through empirical evaluations in various simulation conditions, the proposed algo-

Keywords:

Data mining

Many-task computing
Cloud computing
Association rule mining
Frequent pattern mining

rithms are shown to deliver excellent performance with respect to scalability and execution time.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Frequent pattern mining involves searching in a database for a
pattern that appears more frequently than a specified threshold.
An association rule is defined as X = Y, where X and Y are item-
sets. Association rule mining is used to discover sets of items, i.e.,
frequent patterns, associated with other items in the database.
Studies on frequent pattern mining are usually classified into two
types: (1) the generate-and-test [3] (Apriori-like) approach and (2)
the frequent pattern growth [9] approach (FP-growth-like). The
Apriori-like methods iteratively generate a candidate itemset with
size (k + 1) from frequent itemsets of size k and scan the database
repetitively to test the frequency of each candidate itemset. The
Apriori-like methods inherently suffer from the following two
costs [9]:

- The cost in memory required to handle a large number of can-
didate itemsets is high. For example, if there are n frequent
length-1 itemsets, there will be nx(n — 1)/2 length-2 candi-
dates. The method accumulates the frequency for each candi-
date, encountering two critical problems. The first problem is
that the main memory is limited and cannot store whole candi-

* Corresponding author.
E-mail address: linwc@kuas.edu.tw (K.W. Lin).

0950-7051/$ - see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.knosys.2013.04.004

dates. The second problem is that even if the whole candidates
can be loaded into the main memory, the performance of accu-
mulating the frequency will be low because the method spends
a large amount of computational time searching for the candi-
date in a large candidate pool, increasing the frequency for
the candidate each time it is found. Moreover, to discover a
length I frequent pattern, the method must generate 2'-2 candi-
dates. The scalability of Apriori-like methods is thus restricted
by the high memory cost.

- The database scanning cost to discover frequent patterns is also
high. Assume the length of the longest pattern in the database is
I. The Apriori-like methods require I physical database scans for
pattern discovery. A physical database scan consumes a large
amount of computational time because of the resulting data
explosion. To reduce the times of the database scans is one
way to reduce execution time.

Han et al. [9] proposed a novel data structure, called frequent
pattern tree (FP-tree), in which transactions are compressed and
stored. A mining algorithm, FP-growth, was then proposed to dis-
cover frequent patterns from the FP-tree without generating candi-
dates, therefore enhancing the scalability of the method. FP-
growth requires only two scans of the physical database and also
greatly reduces the execution time. After two scans of the data-
base, the method constructs a header table and a FP-tree


http://crossmark.dyndns.org/dialog/?doi=10.1016/j.knosys.2013.04.004&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2013.04.004
mailto:linwc@kuas.edu.tw
http://dx.doi.org/10.1016/j.knosys.2013.04.004
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

K.W. Lin, Y.-C. Lo/ Knowledge-Based Systems 49 (2013) 10-21 11

corresponding to the database. It then uses the FP-growth algo-
rithm to discover frequent patterns by recursively reconstructing
conditional FP-trees from the original FP-tree. An entry of the
header table records an item (usually an ID) and the first appear-
ance node in the FP-tree. A node of the FP-tree consists of an attri-
bute for storing the item, a reference for its parent, a set of
references for its children nodes, and a reference for the next node
with the same item in the FP-tree. The scalability of FP-growth/FP-
growth-like methods is limited by the main memory size because
all of the reconstructed FP-trees with the header tables are stored
in the main memory. Moreover, the scalability and the execution
performance of FP-growth-like methods are restricted to the FP-
tree size. In an FP-tree study, a large FP-tree is a tree that has many
branches or a tree with a high number of average fan-out nodes. A
large FP-tree is derived from one or a combination of the following
three causes: data characteristics, such as a large number of items;
user behaviour characteristics, such as a long transaction length;
and mining parameters, such as a small support threshold. If an
FP-tree is large, the methods need a large amount of memory to
store the FP-tree, the conditional FP-trees and the header tables,
as well as a large amount of computational time to reconstruct
the conditional FP-trees to complete the mining. A large database
might contain a large number of items, complex user behaviours,
etc., causing a sharp increase in the computation time and required
memory for mining frequent patterns.

Many studies on frequent pattern mining have proposed
improvements in execution time efficiency. Parallel and distrib-
uted computing techniques have attracted attention for their abil-
ity to manage and compute large amounts of data [18]. The
difficulties encountered when mining large databases launched re-
search into the design of parallel and distributed algorithms [4,8]
and architectures like grid [1,6,7,19,21,23], cluster [7,11,23,24],
cloud [10,14,15,22]and shared nothing parallel machines [12] to
solve the problem. Previous studies have also used multiprocessor
architectures to improve performance [13], but the expense of the
machines slowed down the advancement of this approach. In [5],
the authors proposed a tree projection technique to achieve paral-
lelism. The technique requires a large amount of memory and is
therefore not very practical. The approach used in most current
studies is to divide the database and distribute each section to
nodes or processors for mining, thus distributing the computa-
tional load. During the mining process, the nodes exchange re-
quired transactions with one another. The data transmission via
the network involves at least four layers, including the physical/
data link layer, the network layer, the transport layer, and the com-
bined session/presentation/application layer. Each layer uses its
own protocol to pack the data in the sender and to unpack the data
in the receiver. In addition to the protocol cost, transmission via
the physical network is time-consuming. For this reason, the work-
load of exchanging data among nodes increases with large data-
base size. Reducing the amount of data transmitted over the
network can significantly improve the execution time. Although
many algorithms have been proposed, the execution efficiency of
frequent pattern mining remains a challenge to researchers be-
cause of the explosion of data.

In [16], the authors proposed the data mining method CARM,
which efficiently utilises cloud nodes to discover frequent patterns
in cloud computing environments. In these environments, work-
load balancing among computing nodes is one of the most critical
issues affecting execution performance. CARM has demonstrated
its superior workload balancing as compared with the well-known
BTP-tree algorithm [25]; however, CARM focuses only on accelerat-
ing the mining process for a single task. Many-task computing is
becoming popular, and should be considered. Many-task comput-
ing is used to bridge the gap between high throughput computing
and high performance computing [17]. There are many applica-

tions where many-task computing would be useful, such as astron-
omy, bioinformatics, cognitive neuroscience, and data mining. A
common characteristic of all these applications is that they are of-
ten provided as services, e.g., the Google search engine, implying
that many users can use it simultaneously [17]. Therefore, an
appropriate design for such environments is necessary.

The primary contributions of this study are: (1) a brief data
structure to store tree reconstruction information and minimise
data transmission on the network, (2) a set of algorithms based
on CARM that discovers frequent patterns capable of providing fast
and scalable service in many-task computing environments, and
(3) a series of experiments to evaluate the performance of the pro-
posed algorithms. Through empirical evaluations at various simu-
lation conditions, we observed the proposed algorithm requires
only 12.2% and 18% execution time, using TPFP-tree [24] and
BTP-tree, respectively, when there are 100 mining tasks. The
improvement increases with an increase in the number of mining
tasks.

In the following sections, we briefly review related work in Sec-
tion 2. Section 3 presents the algorithms for many-task frequent
pattern mining. Section 4 provides an empirical evaluation of the
performance of the algorithms. Section 5 presents the conclusions
and future work.

2. Related work

In this section, we review previous studies on three subjects
closely related to this research: (1) FP-tree and FP-growth, (2) par-
allel and distributed frequent pattern mining and (3) CARM
algorithm.

2.1. FP-tree and FP-growth

Han et al. [9] proposed a tree-based data structure, FP-tree, and
the corresponding mining algorithm, FP-growth, for discovering
frequent patterns. The algorithm requires two database scans to
complete the mining task. The first scan calculates the support
for each item. This scan also creates a header table, recording the
item name, its corresponding support and the first node-link link-
ing to the first node in the FP-tree with the same item name. The
support sorts items in the header table in descending order. For
each transaction, items with support values under the threshold
are filtered out in the second scan, and the remaining items are
sorted in descending order using their support values. The sorted
items in each transaction are inserted into the FP-tree. The FP-tree
structure contains a root node labelled as null, a set of item-prefix
subtrees as the children of root, and a header table. The FP-tree
node structure is <item-name, count (support), node-link>, in
which item-name is the item name used for identification, count
is the number of transactions reaching this node by the same path
from root, and node-link is a pointer linking to the next node in the
FP-tree with the same item name.

To insert transaction P into FP-tree T, we check whether T has a
child n such that n.item-name is identical to the item-name of the
first element of P. If the node exists, the count of n is increased by 1.
Otherwise, it creates a new node, m, with the same item name as n.
The count of m is set to 1, the parent link is set to T, and m’s node-
link is set to the nodes with the same item-name using the node-
link structure. We recursively perform the insertion for each item
in P until each item is inserted into the FP-tree. After constructing
the FP-tree, FP-growth is used to discover the frequent patterns. An
item in the header table is selected to construct the conditional FP-
tree by inserting all prefix paths of the item, which can be retrieved
using the node-link structure in header table. The item name is
called the conditional pattern base. The FP-growth is executed



Download English Version:

https://daneshyari.com/en/article/405168

Download Persian Version:

https://daneshyari.com/article/405168

Daneshyari.com


https://daneshyari.com/en/article/405168
https://daneshyari.com/article/405168
https://daneshyari.com

