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In this paper we propose an effective and efficient random projection ensemble classifier with multiple
empirical kernels. For the proposed classifier, we first randomly select a subset from the whole training
set and use the subset to construct multiple kernel matrices with different kernels. Then through adopt-
ing the eigendecomposition of each kernel matrix, we explicitly map each sample into a feature space and
apply the transformed sample into our previous multiple kernel learning framework. Finally, we repeat
the above random selection for multiple times and develop a voting ensemble classifier, which is named
RPEMEKL. The contributions of the proposed RPEMEKL are: (1) efficiently reducing the computational
cost for the eigendecomposition of the kernel matrix due to the smaller size of the kernel matrix; (2)
effectively increasing the classification performance due to the diversity generated through different ran-
dom selections of the subsets; (3) giving an alternative multiple kernel learning from the Empirical Ker-
nel Mapping (EKM) viewpoint, which is different from the traditional Implicit Kernel Mapping (IKM)
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1. Introduction

Kernel-based learning is successfully applied in machine learn-
ing [10,11,14,15,19,20]. The kernel-based learning transforms the
input space into a feature space and works in the feature space,
where the transformation is achieved through the mapping
@(x) : x — F. In the existing kernel-based learning, there are two
kinds of &(x) including implicit and explicit representations de-
noted as @(x) and @%x). The implicit mapping ®i(x) called
Implicit Kernel Mapping (IKM) [10] is achieved through introduc-
ing a kernel function k(x;x;) that can determine the geometrical
structure of the mapped data in the feature space, where we need
not obtain the form of the @&(x) but just compute the k(x;x;)=
@Y(x;) - D'(x;). In contrast, the @%x) called Empirical Kernel
Mapping (EKM) [16] should explicitly give all the features of x in
the mapped ®°-space.

On the other hand, the kernel-based learning can also be sorted
into Single Kernel Learning (SKL) and Multiple Kernel Learning
(MKL) according to the number of the used kernels in learning pro-
cessing. SKL selects one optimized kernel from a set of candidates.
MKL syncretizes and uses multiple kernels in learning processing.
Therefore, in our opinion there are naturally at least four combina-
tions: the SKL with IKM, the SKL with EKM, the MKL with IKM and
the MKL with EKM also denoted as MEKL. In traditional kernel-

* Corresponding author. Tel.: +86 15000779526.
E-mail addresses: wangzhe@ecust.edu.cn (Z. Wang), pilixiaoxuanfeng@gmail.
com (W. Jie), s.chen@nuaa.edu.cn (S. Chen), gaodaqi@ecust.edu.cn (D. Gao).

0950-7051/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.knosys.2012.08.017

based methods, the SKL with either IKM or EKM is widespread
[10,16]. Since MKL can increase performance effectively, the MKL
with IKM has recently got much attention [7,13]. In contrast, It is
less attracted for the MKL with EKM except our previous work
MultiK-MHKS [14].

The MultiK-MHKS explicitly maps the input samples into M fea-
ture spaces with given M different kernels. Then, it constructed a
term Rjgs; called Inter-Function Similarity Loss and introduced Rjgs;
into a regularization framework. In the MultiK-MHKS, we explicitly
mapped each sample x € R? into ®°(x) € R" through the whole
training set S = {(x;, ®;)}}, for M times with the given M kernels.
With each kernel k(x;, x;), we generated the kernel matrix
K € RV with the set S and carried out the eigendecomposition
of the K as follows

K = Quor Arr Q) s (1)

where r is the rank of the K. Then through letting R = QA'?, each
sample x was explicitly mapped through the following form

B (X), = Roy k(X X0), - RO XN) - (2)

It can be found that it would take a computational cost with o(N°)
for the Eq. (1). If the N is large, it would be much larger for the com-
putational cost of the eigendecomposition of the K.

To reduce the cost for the eigendecomposition of the K, in this
paper we first adopt the strategy of the Random Projection (RP).
RP aims to project the original high-dimensional data onto a
lower-dimensional space with a random matrix [1-3]. From the
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Eq. (2), it is found that the sample x is transformed into a r-dimen-
sional kernel space through the whole training set S with the size
N. Here, based on the random characteristic of RP, we randomly se-
lect a subset S' = {(x;, @;)}’_;, p <N from the whole set S and use
the S’ to construct M kernel matrices K; € RP*? with M different
kernels. Through adopting the eigendecomposition for the K; in-
stead of the original K, we explicitly map each sample x into
®f(x),l=1...M based on the Eq. (2). Due to changing the trans-
formed size for the x in the Eq. (2), we can reduce the computa-
tional cost of the matrix decomposition from o(N3) to o(p3).
Subsequently, we apply the transformed sample &f(x),I=1...M
into our previous MEKL framework [14].

Secondly, in order to prevent the proposed classifier from
reducing classification performance, we further give an ensemble
scheme with voting. In detail, we randomly select the subset &’
for multiple times and generate multiple S;,q=1...H. Subse-
quently, for each S;,q =1...H we repeat the explicitly mapping
(2) and the following learning applied into our previous MEKL
[14]. The final ensemble is produced through a voting scheme that
is applied to the classification outcomes of all the classifiers gener-
ated from S;,q =1...H. The whole procedure is named Random
Projection Ensemble Learning with Multiple Empirical Kernels de-
noted RPEMEKL for short. The advantages of the proposed RPE-
MEKL are highlighted as follows: (1) reducing the computational
cost for the eigendecomposition of the kernel matrix from o(N°)
to o(Hp?); (2) increasing the classification performance due to the
diversity generated through different random selections of the
S;s; (3) giving an alternative multiple kernel learning from the
Empirical Kernel Mapping (EKM) viewpoint, which is different
from the traditional Implicit Kernel Mapping (IKM) learning.

The rest of this paper is organized as follows. Section 2 gives the
architecture of the proposed RPEMEKL. Section 3 demonstrates the
feasibility and effectiveness of the proposed RPEMEKL in terms of
classification and computation. Finally, both conclusion and future
work are given in Section 4.

2. Random Projection Ensemble Learning with Kernels
(RPEMEKL)

The proposed RPEMEKL is made up of two parts. The first part is
to randomly select a subset S’ from the whole set S based on the
random characteristic of RP and apply the transformed samples
from the S’ onto our previous MEKL framework [14]. The second
part is to repeat the first part for multiple times based on different
random selections for §' and to construct a voting ensemble with
different classifiers generated from the first part.

Suppose that there is a training sample set S = {(x;, ;) }}; C &,
where x; € R? and its corresponding class label ¢; e {+1,—1}. In
the first part, we randomly select a sample subset S =
{(xi, ;)}_, from the whole set S. Then we adopt the subset S’ to
generate the kernel matrix K; € R”*? with one certain kernel k(x;,
x;) and carry out the eigendecomposition of each K; as follows

Ki=QAQ], (3)

where A, € R is a diagonal matrix consisting of the r; positive
eigenvalues of K}, and Q; € RP*" consists of the corresponding ortho-
normal eigenvectors. Here we adopt the EKM for each mapping and
thus each input sample x can be mapped into &;(x) through the fol-
lowing equation

i (x) = A 2Q [k(x,x1), ... k(x,%,)], (4)

where @} (x) € R". The feasibility of doing so can be guaranteed by
the characteristic of RP in kernel-based learning, which is that the
learning based on the mapping (4) can lead to an approximate
separability at one certain margin [3]. Since our previous work

MultiK-MHKS [14] makes the p in the (4) with the size of the whole
input training samples N and in this paper we adopt a smaller p, the
computational cost for the eigendecomposition in the Eq. (3) can
decrease from o(N?) in the MultiK-MHKS to o(p?) in the proposed
method.

Further, the proposed method explicitly maps all the input sam-
ples of the set S into the transformed sample set {(®](x;),...,

(X)), ..., P (%))}, with the Eq. (4) and M given kernels. Then,

we introduced the generated {(®5(x;),...,P[(x),..., Py (X)) }f’:l
onto our previous MEKL framework. In detail, we adopt the Modi-
fication of Ho-Kashyap algorithm with Squared approximation of
the misclassification errors (MHKS) [8] as the base classifier. There-
fore for the proposed RPEMEKL, we give the following optimization

problem:

M
min L= {(Y{(Dl — ]N><l — b[)T(YICO( — 1N><1 — b{)
w; € Rr’+],b( >0 =1
I=1...M

M
+ Cl(j)le)d + JVZ(YWO[
=1

LS Vo) (Yo
=572 _Yio;) (Yzwz - Yj%‘), 5)
M = J M e

where w; = [/, wq]", @ € R,y € R are the augmented weight
vector, the weight vector and the bias respectively; the matrix Y;

is defined as Y, = [q)l (dif(xl)T, 1); YO <d>f(xN)T, ])]; 11 Tepre-
sents the vector of N dimension with all entries equal to 1;
b; € R¥*! represents the vector with all entries equal to nonnegative

values and the regularized parameters c;, 2 > 0 € R. In the optimi-
zation problem (5), Y, w,, b; correspond to one MHKS in one &;-

space that is determined by the corresponding {(&{(x;), (p,.)}:il. In
the right side of the Eq. (5), the first term corresponds to the prin-
ciple of MHKSs in M views. The second term is to syncretize the M
MHKSs, which denotes that the outputs of the samples
{(Pf (), (p,.)}:i1 in each @{-space onto their corresponding weight
vector o, are constrained to be maximally close to the average out-
puts of all the feature spaces.

In the optimizing processing for the (5), we employ a modifica-
tion of the gradient descent with a heuristic update-rule for each
w;. Through making the gradient of the L of the (5) with respect
to the w; be zero, we can obtain

Mo\ pry Ty 15

= | (V2= )YVt al| YU bt Tva+2q: > Yoy ),
J=15#1

6)

where T, is a diagonal matrix with full ones except the last element
set to zero. In the Ith &}-space, it can be noted that w; depends on b,
from the Eq. (6). Then by differentiating the L in Eq. (5) with respect
to b; and setting the result equal to zero, we can get

oL

— -0 =Y — b — 1nu1. 7

b, € 100 I Nx1 (7)
Then, we adopt the iterative algorithm for determining ; and b,
similarly to that in [8]. First, with b;‘ representing the vector b; at
the kth iteration, we initialize b} > 0, then keep bf > 0 at each iter-
ation, and finally obtain

b >0 ®)
bE = by + py(ef + lef])
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