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a b s t r a c t

A new algorithm, the PCB (partial correlation-based) algorithm, is presented for Bayesian network struc-
ture learning. The algorithm effectively combines ideas from local learning with partial correlation tech-
niques. It reconstructs the skeleton of a Bayesian network based on partial correlation and then performs
a greedy hill-climbing search to orient the edges. Specifically, we make three contributions. First, we
prove that in a linear SEM (simultaneous equation model) with uncorrelated errors, when the datasets
are generated by linear SEM, subject to arbitrary distribution disturbances, we can use partial correlation
as the criterion of the CI test. Second, we perform a series of experiments to find the best threshold value
of the partial correlation. Finally, we show how partial correlation can be used in Bayesian network struc-
ture learning under linear SEM. The effectiveness of the method is compared with current state of the art
methods on eight networks. A simulation shows that the PCB algorithm outperforms existing algorithms
in both accuracy and run time.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Bayesian networks (BN) are widely used to represent probabi-
listic relationship among random variables. They have been suc-
cessfully applied to many domains such as medical diagnosis,
gene data analysis, and hardware troubleshooting, rare event pre-
dictions, scenario analysis [28,4,6].

Learning the structure of a Bayesian network from a dataset D is
useful; unfortunately, it is an NP-hard problem [5]. Consequently,
many heuristic techniques have been proposed. One of the most
basic search algorithms is a local greedy hill-climbing search over
all DAG structures. The size of the search space of the greedy
search is a super-exponential function of the number of variables.
One approach is to place constraints on the search to improve its
efficiency, as in the K2 algorithm [7], the SC algorithm [10], the
MMHC algorithm [25], and the L1MB algorithm [18].

One drawback of the K2 algorithm is that it requires a total var-
iable ordering. The SC algorithm is based on the idea of local learn-
ing and uses a two-phase framework including a Restriction step
and a Search step. In the Restriction step, the SC algorithm uses
mutual information to find a set of potential neighbors (parents
and children) for each node and achieves fast learning by restrict-
ing the search space. One drawback of the SC algorithm is that it
only allows a variable to have a maximum of up to k parents. How-

ever, a common parameter k for all nodes will have to sacrifice
either efficiency or quality of reconstruction [25]. The MMHC algo-
rithm uses the max–min parents–children (MMPC) algorithm to
identify a set of potential neighbors [25]. Our experiments show
that the MMHC algorithm has high accuracy, but one drawback
of it is that it requires conditional independency tests on exponen-
tially large conditioning sets. Therefore, the MMHC algorithm is
very slow on high dimensional complex networks. The L1MB algo-
rithm uses L1 techniques to learn DAG structure and uses the LARS
algorithm [9] to find a set of potential neighbors [18]. The L1MB
algorithm has good time performance. However, the L1MB algo-
rithm evaluates the effects of a set of variables, not a single vari-
able. The method can describe the correlation between a set of
variables and a variable but not the correlation between two vari-
ables. It is not reasonable to use this method to select potential
neighbors, and our experiments show that the L1MB algorithm
has low accuracy.

In fact, many algorithms, such as the K2, SC, PC [22], TPDA [3],
and MMHC, can be implemented efficiently with discrete variables
but are not directly applicable to continuous variables. Some algo-
rithms including the SC, PC, and TPDA, have been designed for
discrete variables. Even though they can be used for continuous
variables, our experiments show that they have many structural
errors. The L1MB algorithm has been designed for continuous vari-
ables. However, it uses L1 regression to find a set of potential
neighbors for one variable once. However, it cannot precisely
capture the causal relation between two variables, so the selection
of potential neighbors is somewhat unreasonable, and our
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experiments show that its accuracy is relatively low. In this paper,
we propose a new heuristic technique using local learning, and we
show experimentally that it outperforms several existing
approaches for continuous and binary variables.

The correlations among multiple correlative variables are com-
plex. To a certain extent, there is a correlation between any two
variables, but that correlation is affected by the other correlative
variables. The simple correlation method does not consider these
influences, so it cannot reveal the true correlation between two
variables. The true correlation between two variables can be
obtained only after the influences of the other correlative variables
are removed. The partial correlation method can eliminate the
influences of other correlative variables by holding them
unchanged in the analysis and thus reveal the true correlation be-
tween the two variables of interest [27]. For example, the findings
in [27] suggest that the simple correlation coefficient between
NmF2 and h(100) is affected by other influence factors and there-
fore cannot reveal the true correlation between NmF2 and h(100);
the partial correlation method can eliminate the influences of
F107, Ap and the seasonal variation factors and can thus reveal
the true correlation between the two variables of interest by
eliminating the influences of the other correlative variables. Partial
correlation has been widely used to describe the relative impor-
tance of variables in multivariate regression analysis, and it has
been successfully applied to many fields such as medicine
[13,26], economics [23], and geology [27]. In causal discovery, it
has been used (as transformed by Fisher’s z [17]) as a continuous
replacement for CI tests in the PC algorithm. Pellet et al. introduced
the partial-correlation-based CI test into causation discovery, on
the assumption that the data follow a multivariate Gaussian distri-
bution for continuous variables [14]. However, when the data do
not follow a multivariate Gaussian distribution, can partial correla-
tion be used as a CI test?

Our first contribution is to prove that partial correlation can be
used as the criterion for a CI test under the linear simultaneous
equation model (SEM), which includes the multivariate Gaussian
distribution as a special case. Our second contribution is that we
propose an effective algorithm, called PCB (partial correlation-
based), which effectively combines ideas from local learning with
partial correlation techniques. The PCB algorithm works in the con-
tinuous or binary variable settings under the assumption data gen-
erated by linear SEM. The computational complexity of PCB is
O(3mn2 + n3)(where n is the number of variables and m is the num-
ber of cases). One advantage of PCB is its time performance. The
time complexity of our PCB is bounded by a polynomial in the
number of variables. Another advantage of the PCB algorithm is
its quite high accuracy. The third advantage of the PCB algorithm
is that it uses a relevance threshold to evaluate the correlation to
alleviate the drawback of SC algorithm (common parameter k for
all nodes), and we also find the best relevance threshold by a series
of extensive experiments. Empirical results show that PCB outper-
forms the above existing algorithms in both accuracy and time
performance.

The remainder of the paper is structured as follows. In Section 2,
we present the background of learning structure. In Section 3, we
present the PCB algorithm and its computational complexity anal-
ysis. Some empirical results are presented and discussed in Section
4. Finally, we conclude this work and address some issues for
future work in Section 5.

2. Background: learning structure

Consider the problem of analyzing the distribution over some
set X of random variables X1, . . . ,Xn, each of which takes values in
some domain Val(Xi), where the variables are either discrete-

valued or continuous-valued. A Bayesian network is an annotated
directed acyclic graph that encodes a joint probability distribution
over X. Formally, a Bayesian network for X is a pair B = hG,Hi. The
first component, G, is a directed acyclic graph with vertices that
correspond to the random variables X1, . . . ,Xn; the second compo-
nent, H, represents the set of parameters that quantifies the net-
work. It contains a parameter hxi jpaðXiÞ ¼ PðxijpaðXiÞÞ, for each
possible value xi of Xi, pa(Xi) of Pa(Xi). Here Pa(Xi) denotes the
set of parents of in G and pa(Xi) is a particular instantiation of
the parents. A Bayesian network B specifies a unique joint proba-
bility distribution over X given by Pðx1; . . . ; xnÞ ¼

Qn
i¼1PðxijpaðXiÞÞ.

The problem of learning a Bayesian network can be stated as
follows. Our input is a fully observed data set D = {x1, . . . ,xm} of in-
stances of X, where each xi is a complete assignment to the vari-
ables X1, . . . ,Xn in Val(X1, . . . ,Xn). Our goal is to find a network
structure G that is a good predictor for the data. The most common
approach to this task is to define it as an optimization problem. We
define a scoring function score ðG : DÞ, which evaluates different
networks relative to the data D. We must then solve the combina-
torial optimization problem of finding the network that achieves
the highest score. An important characteristic of the score is its
decomposability [24], i.e., that it is the sum of the scores associated
with individual families (where a family is a node and its parents):

scoreðGÞ ¼
Xn

i¼1

scoreðfXi;PaðXiÞgÞ:

where{Xi,Pa(Xi)} is a set composed by the union of X and its parents.
Given a scoring function, our task is to find

argmaxðscoreðGÞÞ:

This task is a difficult combinatorial problem. Several of its specific
instances have been shown to be NP-hard, even when the maxi-
mum number of parents per node is at most two [5].

Consequently, many heuristic techniques have been proposed.
Three main approaches to the problem are the search-and-score,
constraint-based, and hybrid approaches. In general, constraint-
based algorithms use tests of conditional independence and mea-
sures of association to impose constraints on the network structure
and infer the final DAG. This is usually done using a statistical
hypothesis test, such as the G2 test, and mutual information. Exam-
ples of this approach include the SGS [21], PC [22], and TPDA [3]
algorithms. Search-and-score methods search over a space of
structures, employing a scoring function to guide the search. Some
of the standard scoring functions are Bayesian Dirichlet (specifi-
cally BDe with uniform priors, BDeu) [9], the Bayesian Information
Criterion (BIC)[19], the Akaike Information Criterion (AIC) [1], and
Minimum Description Length (MDL) [16,12]. Examples of this ap-
proach include the GES, K2, SC, and L1MB algorithms. Hybrid algo-
rithms combine the search-and-score and constraint-based
techniques. The first hybrid algorithm to appear is the CB algo-
rithm [20]. Perhaps the most successful algorithm of this kind is
the MMHC algorithm. The MMHC was shown to outperform many
other methods in a series of extensive experiments [18].

3. PCB algorithm

In this section, we first give the framework of the PCB algo-
rithm, we then discuss each step individually, and finally, we give
an analysis of the PCB algorithm.

3.1. Outline of the algorithm

We can now explain our algorithm, called the PCB (Partial
Correlation-Based) algorithm, which works under the two-phase
framework. PCB first identifies the undirected skeleton of a
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