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a b s t r a c t

In this paper, we present a fast and accurate kernel-based supervised algorithm referred to as the Reduced
Kernel Extreme Learning Machine (RKELM). In contrast to the work on Support Vector Machine (SVM)
or Least Square SVM (LS-SVM), which identifies the support vectors or weight vectors iteratively, the
proposed RKELM randomly selects a subset of the available data samples as support vectors (or mapping
samples). By avoiding the iterative steps of SVM, significant cost savings in the training process can be
readily attained, especially on Big datasets. RKELM is established based on the rigorous proof of universal
learning involving reduced kernel-based SLFN. In particular, we prove that RKELM can approximate any
nonlinear functions accurately under the condition of support vectors sufficiency. Experimental results on
awide variety of realworld small instance size and large instance size applications in the context of binary
classification, multi-class problem and regression are then reported to show that RKELM can perform at
competitive level of generalized performance as the SVM/LS-SVM at only a fraction of the computational
effort incurred.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Kernel based learning methods have been extensively used
for solving classification and regression problem due to their
high generalization performance and the mathematical rigor of
the field (Neuvial, 2013). To date, a plethora of kernel based
learning methods like the support vector machine (SVM) (Vapnik,
1995) and its variants including LS-SVM (Suykens & Vandewalle,
1999), RSVM (Lee & Huang, 2007) and LLSVM (Zhang, Lan, Wang,
& Moerchen, 2012) have been proposed for data analysis. The
classical SVM involves a mapping of the training data into a
high dimensional feature space through some nonlinear feature
mapping function. A standard optimization method then follows
so as to arrive at appropriate solution that maximizes the margin
of separation between the different classes in the nonlinear feature
space, while minimizing training errors.

A least square version of the SVM classifier was subsequently
proposed in Suykens and Vandewalle (1999). In contrast to
the inequality constraints adopted in a classical SVM, equality
constraints are considered in the LS-SVM (Suykens & Vandewalle,
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1999). Instead of quadratic programming, one can thus implement
the least square approach with ease by solving a set of linear
equations. Notably, LS-SVM has been reported to exhibit superior
generalization performance and low computational requirements
in many applications. Recently, a unified learning framework
for regression and classification, which is termed as the Kernel
Extreme Learning Machine (KELM) was also proposed as an
extension of the Extreme Learning Machine (ELM) learning theory
and the classification capability theorem. In the KELM unified
learning framework, the bias term in the optimization constraints
of SVM, LS-SVM, and PSVM can be eliminated. This gives rise to
learning algorithm with mild optimization constraints that offers
improved generalization performance and low computational
complexity. Nonetheless, when dealing with large scale problems,
the conventional SVM and LS-SVM aswell as the KELMdo not scale
well with the big datasets in general.

In the past decades, many large scale learning algorithms
have been proposed. Lee and Huang (2007) proposed the reduced
support vector machines (RSVM) which restrict the number of
candidate support vectors. The main characteristic of this method
is to reduce the kernel matrix from N × N to N × Ñ , where N
is the number of training instances and Ñ denotes the size of a
randomly selected subset of training data that serve as candidate
support vectors. Wang, Crammer, and Vucetic (2012) proposed a
budgeted stochastic gradient descent approach for training SVMs
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(BSGD-SVM). The approach bounds the number of support vectors
during training through several budget maintenance strategies
including removal, projection and merging. Chang, Guo, Lin, and
Lu (2010) proposed an approach that employs a decision tree to
decompose the given data space as a first step before training SVMs
on the decomposed regions. Results reported indicated notable
speed up in training time at competitive test accuracy. LASVM
(Bordes, Ertekin, Weston, & Bottou, 2005), on the other hand,
is a one-pass online SVM that involves iterations of sequential
minimal optimization (SMO) during each model update so as
to remove data samples that are deemed as unlikely to serve
as suitable SVs from the training set. Tsang, Kwok, and Cheung
(2005) scale up the kernel SVM by reformulating the quadratic
programming used in SVM as a minimum enclosing ball problem
and then use an efficient approximation algorithm to attain a near-
optimal solution. In spite of the extensive efforts in the area to
cope with the increasing data instance size and dimensionality
more elegantly, existing works havemainly focused on developing
effective strategies for identifying the optimal set of support
vectors. The computational process of identifying support vectors,
however can become very intensive, especially when dealing with
large scale data.

In what follows, the core objectives and contributions of
the present work are outlined: (1) we propose a fast non-
iterative kernel machine, which is referred to as the fast Reduced
Kernel Extreme LearningMachine (RKELM), based on kernel-based
learning and extreme learning machine. A key characteristics of
the present work is that support vectors are randomly chosen
from the training set as opposed to some sophisticated process
which is often compute intensive. (2) We prove that RKELM can
approximate any nonlinear functions with zero error only if the
kernel is strictly positive definite and all training data are chosen
as support vectors. (3)We analyze the relation of the present work
to other related works, such as KELM, ELM and RSVM, and reveal
the effects of hidden nodes size and the regularization parameter
on generalization performances.

The rest of the paper is organized as follows: Section 2 gives a
brief overview of the classic ELM (Huang, Zhu, & Siew, 2006) and
the KELM (Huang et al., 2006). Section 3 presents themathematical
derivation of RKELM. The relation of RKELM to other relevant
state-of-the-art algorithms is then discussed in Section 4. The
performance evaluation and validation of RKELM is subsequently
presented in Section 5, using commonly used well established
datasets from the UCI repository. Last but not least, the brief
conclusions and future works are given in Section 6.

2. A brief review of Extreme Learning Machine and its kernel
extension

In this section, an overview of the ELM and its kernel extension
(Huang et al., 2006) is presented. This serves to provide the
necessary background for the development of the RKELM in
Section 3.

2.1. ELM

The Extreme Learning Machine (ELM) was proposed as a
fast learning method for Single-hidden-Layer Feedforward Neural
network (SLFN) in Feng, Ong, and Lim (2013); Feng, Ong, Lim, and
Tsang (2015), Huang, Chen, and Siew (2006); Huang, Zhu, and Siew
(2004) and Rong, Ong, Tan, and Zhu (2008), where the hidden layer
can be any form of piecewise continuous computational functions
including Sigmoid, Radial Basis, trigonometric, threshold, ridge
polynomial, fully complex, fuzzy inference, high-order, wavelet,
etc. (Huang & Chen, 2007). In ELM, the number of hidden nodes
poses as a structural parameter that needs to be predefined, while

parametric settings of the hidden nodes, for example, the impact
factors of the RBF nodes, the biases and/or input weights of the
additive nodes are randomly assigned.

Given training samples {(xi, ti)|xi ∈ Rd, ti ∈ Rm
}
N
i=1, where N

is the number of instances, d is the dimension, m is the number
of output nodes. For regression problems m = 1, while for
classification problems m is the number of categories, classes or
labels. The output function of ELM for SLFNs is given by

f (x) =
L

i=1

βih(x, ai, bi) = h(x)β (1)

where L is the number of hidden nodes, β = [βi, . . . , βL]
T is the

vector of output weights, ai is the center of RBF nodes or input
weights of additive nodes, bi is the impact factor of RBF nodes or
bias of additive nodes, and h(·) is the activation function which is
but not limited to Sigmoid, Sine and hardlim functions. The ELM
can be solved as a constrained optimization problem (Huang, 2014;
Huang, Zhou, Ding, & Zhang, 2012; Huang et al., 2006):

Minimizeβ : ∥Hβ − T∥α1
p +

C
2
∥β∥α2

q (2)

where α1 > 0, α2 > 0, p, q = 0, 1
2 , 1, 2, . . . , F ,+∞ and C

is control parameter for a tradeoff between structural risk and
empirical risk, H is the hidden-layer output matrix

H =

h(w1, x1, b1) · · · h(wL, x1, bL)
...

. . .
...

h(w1, xN , b1) · · · h(wL, xN , bL)

 and T =

tT1
...

tTN

 .

(3)

A number of efficient methods may be used to determine the
output weights β such as the orthogonal projection method, iter-
ative methods (Luo, Vong, & Wong, 2014), eigenvalue decomposi-
tion method (Golub & VanLoan, 1996) and others. When p, q = F
andα1, α = 2, a popular and efficient closed-form solution (Huang
et al., 2012) is:

β =


H⊤


CI+ HH⊤

−1T N ≥ L
CI+ H⊤H

−1 H⊤T N ≤ L.
(4)

2.2. Kernel Extreme Learning Machine

As proposed in Huang et al. (2012), if h(·) is unknown, i.e., an
implicit function, one can apply the Mercer’s conditions on ELM,
and define a kernel matrix for ELM that takes the form:

KELM = HHT
: KELMi,j = h(xi) · h(xj) = κ(xi, xj). (5)

Then, substituting (5) and (4) into (1), we can obtain the kernel
form of the output function as follows,

f (x) =

κ(x, x1)
...

κ(x, xN)


T

(CI+ KELM)−1 T. (6)

Similar to the SVM (Vapnik, 1995) and LS-SVM (Suykens & Van-
dewalle, 1999), h(x) need not be known; instead, its kernel κ(u, v)
(e.g., Gaussian kernel κ(u, v) = exp(∥u − v∥2/σ)) can be pro-
vided. L need not be available beforehand either. The experimental
and theoretical analysis of Huang et al. (2012) showed that KELM
produces improved generalization performance over the SVM/LS-
SVM. The work, however was established only on small datasets.
When dealing with Big data, however, the training time of O(N3)
and kernelmatrix size ofO(N2)become a significant concern (Zhai,
Ong, & Tsang, 2014).



Download English Version:

https://daneshyari.com/en/article/405421

Download Persian Version:

https://daneshyari.com/article/405421

Daneshyari.com

https://daneshyari.com/en/article/405421
https://daneshyari.com/article/405421
https://daneshyari.com

