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a b s t r a c t

Echo State Networks are efficient time-series predictors, which highly depend on the value of the spectral
radius of the reservoir connectivity matrix. Based on recent results on the mean field theory of driven
random recurrent neural networks, enabling the computation of the largest Lyapunov exponent of an ESN,
we develop a cheap algorithm to establish a local and operational version of the Echo State Property.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Time series prediction is becoming ubiquitous in science and
technology. Interestingly, common machine learning algorithms,
such as feedforward neural networks (LeCun, Bengio, & Hinton,
2015), are not designed to naturally process random variables
whose samples are not independently and identically distributed
(Haykin, 2009). Times series are such random variables since each
time step is highly correlated to the previous.

Recurrent neural networks are more naturally associated to
times series since they both share the same nature: they are a
trajectory of a (possibly stochastic) dynamical system (Funahashi
& Nakamura, 1993). However, the learning process of the network
recurrent weights can be difficult in practice (Bengio, Simard,
& Frasconi, 1994). The classical Back Propagation Through Time
learning algorithm is converging very slowly and the prediction
performance sometimes deteriorates quickly when the network
crosses a bifurcation.

Echo State Networks (ESN) are a special kind of recurrent
neural networks designed for performing non-linear time-series
forecasting (Jaeger, 2001; Jaeger & Haas, 2004). As an instance of a
more general framework called reservoir computing (Lukosevicius
& Jaeger, 2009), the ESN architecture is based on a randomly
connected recurrent neural network, called reservoir, which is
driven by a temporal input. The state of the reservoir is a
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rich representation of the history of the inputs (Buonomano &
Merzenich, 1995), so that a simple linear combination of the
reservoir neurons is often a good predictor of the future of the
inputs. The computation of the output connections can be done
explicitly and corresponds to the minimization of the relative
entropy between the network and the inputs dynamics (Galtier,
Marini, Wainrib, & Jaeger, 2014), for which the associated gradient
descent may be implemented with biologically plausible learning
rules (Galtier & Wainrib, 2013). In this paper, we focus on the
input-driven reservoir, which may be governed by a variety of
dynamical systems beyond random neural networks (Dambre,
Verstraeten, Schrauwen, & Massar, 2012), although we will only
deal with RNN here.

It is important that the driven reservoir produces a trajectory
robust to small perturbations. When this condition is unsatisfied,
two arbitrarily close input signals may lead to two very differ-
ent reservoir representations, hence making ESNs useless for su-
pervised learning tasks. Originally, Jaeger has introduced the Echo
State Property (ESP) which guarantees that the network is in a suit-
able state to do predictions (Jaeger, 2001).

Finding the right set of hyper-parameters, such as the spectral
radius of the reservoir connectivity matrix, to achieve optimal
performance is usually done through computationally intensive
cross-validation. Indeed, the theoretical analysis of this question
remains an open problem. Estimating the domain of validity of the
ESP is the first step in this process, since it is a necessary condition
to have a decent performance. To date, existing theoretical results,
reviewed in Section 2, do not enable a practical estimation of this
domain.
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In this paper, we propose a practical algorithm for comput-
ing the domain of validity of the ESP. To achieve the goal, we
use a mean-field approach applied to non-autonomous random
neural networks in the large n limit. This theory derives a self-
consistent statistical description of the reservoir dynamics un-
raveling the transition between regularity and irregularity in the
network, based on a Lyapunov stability analysis. Although brought
very recently into the field of echo-state networks by Massar
and Massar (2013), this theoretical approach has a long history,
dating back to early works on spin-glass models (Sompolinsky &
Zippelius, 1981, 1982), followed by applications to random neu-
ral networks dynamics as in Cessac, Doyon, Quoy, and Samuelides
(1994), Faugeras, Touboul, and Cessac (2009), Molgedey, Schuch-
hardt, and Schuster (1992) and Sompolinsky, Crisanti, and Som-
mers (1988). The rigorous justification of this heuristic approach is
non-trivial and has been resolved by Arous and Guionnet (1995),
Cabana and Touboul (2013) andMoynot and Samuelides (2002) us-
ing large deviations techniques.

The paper is organized as follows. In Section 2, we review
existing theoretical results about the ESP. Next, in Section 3, we
derive a mean field theory of driven leaky integrator recurrent
neural networks (RNNs) on a regular graph, and we show how it
can be used to find the frontier between order and disorder for the
network dynamics. Finally, in Section 4 we show how this can be
used to define a computable condition guaranteeing an operational
version of the ESP.

2. Echo-state property: preliminary results

2.1. Echo-state network

The network we consider in this paper is a leaky integrator ESN
(Jaeger, Lukosevicius, Popovici, & Siewert, 2007) defined over a reg-
ular graph with degree αn, proportional to n. This means that ev-
ery neuron in the network is only connected to αn other neurons,
which is often used in practice to reduce computational complex-
ity. To apply the mean-field theory, we will assume that n goes to
infinity, but consider α ∈ (0, 1] to be a constant. The connections
between neurons are weighted: we write Jij the weight from neu-
ron j to neuron i. The weights are independent random variables
satisfying:

E(Jij) = 0 and E(J2ij) =
σ 2

n
< +∞.

This quenched hypothesis excludes any dynamics on the weights:
they are kept constant after having been randomly drawn.

Given a one-dimensional input time series u : {1 · · · T } → R,
the classical neural network discrete dynamics is

xi(t + 1) = (1− lτ)xi(t)+ τS


j→i

Jijxj(t)+miu(t)


(1)

where x(t) ∈ Rn corresponds to the activity of all the neurons
in the network at time t . The vector of feedforward connections
m ∈ Rn is made of i.i.d. random variables satisfying E(mi) = 0,
E(m2

i ) = m2. The numbers l and τ are in [0, 1] and control the
timescale of the ESN dynamics. The function S(.) is a typical odd
sigmoid with S(0) = 0, S ′(0) = 1, S ′(x) > 0 and xS ′′(x) ≤ 0. Note
that it implies it is a 1-Lipschitz function. Actually, the following
computations become explicit when a particular choice is made:
S(x) = erf(

√
π

2 x) (which follows the requirements above). We
write


j→i the summation of incoming information to a neuron

which is only done over the neuronswhich are connected (through
the graph) to the considered neuron.

2.2. Echo-state property

The original definition of the ESP from Jaeger (2001) and the
equivalent formulations manipulate left infinite input time-series
assuming that the initial condition occurs at t = −∞. The ESP
definition can be summarized as

Definition 2.1 (ESP Jaeger, 2001). A network has the ESP if the
network state x(t) is uniquely determinedby any left-infinite input
sequence {u(t − s) : s ∈ N}.

In other words, it means that the initial condition of the network
(at t = −∞) does not influence the trajectory of the states,
which corresponds to the property that the input-driven network
has a unique global attractor (Cheban, 2004). The ESP seems to
be important in practice to design efficient reservoirs. Indeed, a
network without ESP would have a poor accuracy in the inevitable
presence of perturbations or noise: a small perturbation could
bring the network to states it has never seen before, destroying the
prediction capabilities of the network. Put differently, the network
has to have some fading memory so that the initial conditions and
perturbations do not impact the accuracy in the long term.

A fundamental result is that a bound on the maximum singular
value η of the network connectivity matrix J ∈ Rn×n can provide
the global ESP for every input. More specifically, if τ = l = 1, then
the following result holds:

Theorem 2.1 (Jaeger, 2001). If η < 1, then the global ESP holds for
every input.

It is important to observe that the sufficient condition in 2.1
holds for the largest singular value η and not for the largest
eigenvalue modulus ρ (also called spectral radius), which are
different for most matrices. Indeed, as pointed out in Zhang,
Miller, and Wang (2012), the theory of random matrices gives
a relationship between the maximum singular value η and the
maximum eigenvalue ρ of the random matrix J when the number
of neurons tends to infinity. First, using recent results on the
empirical spectral distribution of random matrices (Tao, Vu, &
Krishnapur, 2010), one can show that large random matrices,
whose entries are i.i.d. random variables with mean 0, finite
variance σ 2

√
n , have eigenvalues which tend to cover uniformly the

disk of radius σ as the number of neurons tends to infinity. For
thesematrices, the non-scaled standard deviation of theweights σ
is in fact equal to the spectral radius ρ. Second, one can use results
concerning the right edge of the Marchenko–Pastur convergence
(Bai & Silverstein, 2010; Geman, 1980; Marchenko & Pastur, 1967)
to show that η → 2σ when the number of neurons tends to
infinity. From this result, as mentioned in Zhang et al. (2012), it
is clear that the condition on the singular values translates to

Theorem 2.2. When the number of neurons tends to infinity (and
with the appropriate scaling of the weights variance by 1

√
n ) the ESP

holds for all inputs if ρ = σ < 1/2.

Interestingly, there is here a clear gap between the theoretical suf-
ficient condition η < 1 (i.e. σ < 1/2) and the condition ρ < 1 (i.e.
σ < 1) which seems to be valid in practice (Lukosevisius, 2012).
Based on the notion of structured singular value and on concepts
from control theory (Lohmiller & Slotine, 1998), a tighter sufficient
condition has been derived involving the computation of the in-
fimum of the maximal singular values of the connectivity matrix
for variety of underlying norms (Buehner & Young, 2006). Despite
its improvement over the classical singular value, this criterion is
difficult to compute in practice, remains poorly understood from
the point of view of random matrix theory, and does not respond
to the problem of finding a criterion which depends on input, as
we will discuss below. It is also interesting to mention the recent
work (Zhang et al., 2012),where the concentration ofmeasure phe-
nomenon (Ledoux, 2005) is used to prove that:
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