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a b s t r a c t

This paper is concerned with the finite-time robust stabilization of delayed neural networks (DNNs) in
the presence of discontinuous activations and parameter uncertainties. By using the nonsmooth analysis
and control theory, a delayed controller is designed to realize the finite-time robust stabilization of
DNNs with discontinuous activations and parameter uncertainties, and the upper bound of the settling
time functional for stabilization is estimated. Finally, two examples are provided to demonstrate the
effectiveness of the theoretical results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, stability of neural networks (NNs) has
received great attention for its potential applications in pattern
recognition, parallel computation, associativememory and control
optimization (Cao & Wang, 2005; Cohen & Grossberg, 1983; Forti
& Tesi, 1995; Shen & Wang, 2009; Zeng & Zheng, 2012). As is well
known, during the hardware implementation of NNs, time delays
are unavoidable due to the finite switching speed of the neuron
amplifiers and they often cause undesirable dynamical behaviors
such as instability or oscillation. On the other hand, the parameters
of NNs may exhibit some deviations because of the existence of
modeling errors, external disturbance, and parameter fluctuations,
which would cause the parameter uncertainties. Therefore, it is
of practical interest to take into account the time delays and
parameter uncertainties when studying stability of NNs. In other
words, the robust stability problem of delayed neural networks
(DNNs) should be considered.

Recently, robust stability of DNNs has been widely investigated
and various robust stability criteria have been proposed (Arik,
2014; Faydasicok & Arik, 2012; Feng, Yang, & Wu, 2015; Guo
& Huang, 2009; Guo, Wang, & Yan, 2014; Huang, Li, Duan, &
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Starzyk, 2012; Shen & Wang, 2012; Wang, Li, & Huang, 2014; Wu,
Wang, Huang, & Zuo, 2010; Xiao & Zeng, 2014; Yang, Gao, & Shi,
2009; Zhang, Wang, & Liu, 2008; Zuo et al., 2009). However, the
neuron activations considered in Arik (2014), Faydasicok and Arik
(2012), Feng et al. (2015), Guo et al. (2014), Huang et al. (2012),
Shen and Wang (2012), Wang et al. (2014), Yang et al. (2009)
and Zhang et al. (2008) are continuous, or even Lipschitzian. The
authors in Forti and Nistri (2003) and Forti, Nistri, and Papini
(2005) have demonstrated the interest in studying the stability
problem of DNNs with discontinuous activation functions. The
discontinuous activations are in the case that the gain of the neuron
amplifiers is very high and the analysis of the ideal discontinuous
case can better reflect the crucial features of the dynamics. It is
shown that DNNs with discontinuous activations are frequently
encountered in practice, and the analysis of the discontinuous
case deserves the research interest in the potential applications
of dry friction, switching in electronic circuits, and optimization
problems (Forti, Grazzini, Nistri, & Pancioni, 2006; Forti & Nistri,
2003; Forti et al., 2005). Thus, it is necessary to consider the
discontinuous activations for more general applications of DNNs.

Different from the asymptotical stabilization with infinite
settling time, finite-time stabilization gives the convergence with
finite settling time. It requires essentially that a control system
is Lyapunov stable and its trajectories tend to zero in finite time
under the designed controller. Previously, Bhat and Bernstein
(2000) proved that there is a necessary and sufficient condition for
finite-time stability of multi-dimensional continuous autonomous
system. Since then, the problems of finite-time stability and
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stabilization have beenwidely studied (Efimov, Polyakov, Fridman,
Perruquetti, & Richard, 2014; Forti et al., 2005; Hong & Jiang, 2006;
Hu, Yu, & Jiang, 2014; Huang, Li, Huang, & He, 2014; Karafyllis,
2006; Liu, Ho, Yu, & Cao, 2014; Liu, Park, Jiang, & Cao, 2014;
Moulay, Dambrine, Yeganefar, & Perruquetti, 2008; Sun, Feng, &
Wang, 2014; Wang & Shen, 2015; Wang, Shen, & Ding, 2015;
Wang & Xiao, 2010; Yang, 2014). However, so far few studies
have been published concerning finite-time stability of time-delay
systems (Moulay et al., 2008; Yang &Wang, 2012). This is because
time-delay systems exhibit more complicated dynamic behaviors
and they are more difficult to deal with than system without
delays. As stated in Moulay et al. (2008), it is difficult to find a
Lyapunov functional that satisfies the derivative condition for the
finite-time stability of time-delay systems. Thus, the finite-time
stability of time-delay systems, especially for the DNNs, is still an
open problem that requires further investigation.

Motivated by the above discussions, we study the finite-time
stability problem of NNs by taking into consideration the time
delays, parameter uncertainties and discontinuous activations in
our paper. To the best of authors’ knowledge, so far there is few
results for the finite-time stabilization of DNNswith discontinuous
activations and parameter uncertainties. By using a designed
delayed feedback controller, the finite-time robust stabilization
for this system is realized. The contributions of this paper are as
follows.

(1) Time delays, discontinuous activations and parameter
uncertainties are considered in studying the finite-time stability
problem.

(2) A delayed feedback controller is designed to realize
the finite-time robust stabilization for a class of DNNs with
discontinuous activations and parameter uncertainties.

(3) The NNs model in our paper is in the presence of parameter
uncertainties and discontinuous activations, which makes our
robust results more general than (robust) stability of neural
networks with continuous activations in Arik (2014), Cao and
Wang (2005), Faydasicok and Arik (2012), Feng et al. (2015), Guo
et al. (2014), Liu, Wang, and Liu (2006), Shen and Wang (2012),
Wang and Shen (2014) and Wang et al. (2014).

(4) The finite-time stabilization with finite settling time
improve and extend the stabilization with infinite settling time
in the previous works (Huang, Huang, Chen, & Qian, 2013; Phat &
Trinh, 2010;Wang et al., 2014;Wen, Huang, Zeng, Chen, & Li, 2015;
Wu & Zeng, 2012; Zhang & Shen, 2015).

(5) In Liu and Park et al. (2014) and Liu and Ho et al. (2014),
finite-time stabilizationwas studiedwhile the systems arewithout
delays and parameter uncertainties. So our methods are general
and can be used to study finite-time stability of other delayed
systems with or without parameter uncertainties.

The remainder of this paper is organized as follows. Some pre-
liminaries are introduced in Section 2. In Section 3, we design a de-
layed controller with which the finite-time robust stabilization of
DNNs with discontinuous activations and parameter uncertainties
is achieved. Besides, we estimate the upper bound of the settling
time functional and provide the finite-time stabilization algebraic
criteria for DNNs without parameter uncertainties. Then, two ex-
amples are provided to demonstrate the effectiveness and superi-
ority of the obtained results in Section 4. Finally, conclusions are
drawn in Section 5.

2. System description and preliminaries

The following notations will be used throughout this paper.
R+, Rn and Rn×n denote the set of all nonnegative real numbers,
the n-dimensional Euclidean space and the set of all n × n real
matrices, respectively. For all x = (x1, . . . , xn)T ∈ Rn, ∥x∥ =
√
xT x is the Euclidean norm and sgn(x) = (sgn(x1), . . . , sgn(xn))T

is the sign function. For a given square matrix A = (aij)n×n ∈

Rn×n, |A| = (|aij|)n×n. C([a, b], Rn) denotes the space of all
continuous functions Ψ : [a, b] → Rn with uniform norm ∥Ψ ∥ =

supa≤s≤b ∥φ(s)∥. A continuous function ν : R → R belongs to the
class K if it is strictly increasing and ν(0) = 0.

In this paper, we consider a class of DNNs as follows:

ẋ(t) = −Dx(t) + Af (x(t)) + Bg(x(t − τ(t))), (1)

where x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn is the state vector.
D = diag(d1, d2, . . . , dn) is a diagonal matrix with di > 0(i =

1, 2, . . . , n). A = (aij)n×n, B = (bij)n×n ∈ Rn×n are the connection
weightmatrix and delayed connectionweightmatrix, respectively.
f (x(t)) = (f1(x1(t)), . . . , fn(xn(t)))T ∈ Rn and g(x(t − τ(t))) =

(g1(x1(t − τ1(t))), . . . , gn(xn(t − τn(t))))T ∈ Rn are the neuron
activation functions. τ(t) = (τ1(t), τ2(t), . . . , τn(t))T is the time-
varying delay, which satisfies 0 ≤ τj(t) ≤ τ , j = 1, 2, . . . , n.

An important factor that affects the stability is the uncertainties
of network parameters. In this paper, the parameter matrices D =

diag(d1, d2, . . . , dn), A = (aij)n×n, B = (bij)n×n of system (1) are
assumed to be norm-bounded within the following ranges:

DI = [D,D] = {D = diag(di) : 0 < di ≤ di ≤ di, i = 1, 2, . . . , n},

AI = [A, A] = {A = (aij)n×n : aij ≤ aij ≤ aij, i, j = 1, 2, . . . , n},

BI = [B, B] = {B = (bij)n×n : bij ≤ bij ≤ bij, i, j = 1, 2, . . . , n}.

(2)

The following assumptions are given for system (1).
(A1) For every j = 1, 2, . . . , n, fj, gj : R → R are continuous

except on a countable set of isolate points {ρ
j
k}, where the finite

right and left limits f +

j (ρ
j
k), g

+

j (ρ
j
k) and f −

j (ρ
j
k), g

−

j (ρ
j
k) exist, re-

spectively.
(A2) For each j = 1, 2, . . . , n, suppose 0 ∈ K [fj(0)], 0 ∈

K [gj(0)] and there exist constants hj > 0, lj > 0, rj > 0, sj > 0,
such that

sup |ξj| ≤ hj|u| + rj, sup |ζj| ≤ lj|v| + sj, (3)

for all u, v ∈ R, where ξj ∈ K [fj(u)] = [min{f −

j (u), f +

j (u)},max
{f −

j (u), f +

j (u)}], ζj ∈ K [gj(v)] = [min{g−

j (v), g+

j (v)},max{g−

j (v),

g+

j (v)}].
Because of the presence of discontinuous activations, system (1)

is discontinuous and its classical solution does not exist. Now we
introduce the concept of Filippov solution (Filippov, 1988).

Definition 1 (Filippov, 1988). For a system with discontinuous
right-hand side:

ẋ(t) = F(t, xt), t ≥ 0, (4)

where x(t) ∈ Rn, xt ∈ C([−τ , 0], Rn) and xt(s) = x(t + s), −τ ≤

s ≤ 0. F : [0, +∞)×Rn
→ Rn is Lebesguemeasurable and locally

essentially bounded. An absolutely continuous function x(t), t ∈

[0, T ], T > 0 is said to be a Filippov solution of system (4) with
initial condition x(s), −τ ≤ s ≤ 0, if it satisfies the differential
inclusion:

ẋ(t) ∈ Φ(t, xt), for a.a. t ∈ [0, T ], (5)

where the Filippov set-valued map Φ(t, xt) : [0, +∞) × Rn
→

2Rn
is defined by

Φ(t, xt) ,

δ>0


µ(N)=0

K [F(t, B(xt , δ) \ N)],

K [E] is the closure of the convex hull of set E, E ⊂ Rn, B(xt , δ) =

{yt : ∥yt − xt∥ < δ, xt , yt ∈ Rn, δ ∈ R+}, and N ⊂ Rn, µ(N) is
the Lebesgue measure of set N .
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