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a b s t r a c t

This paper investigates global projective synchronization of nonidentical fractional-order neural net-
works (FNNs) based on sliding mode control technique. We firstly construct a fractional-order integral
sliding surface. Then, according to the sliding mode control theory, we design a sliding mode controller
to guarantee the occurrence of the sliding motion. Based on fractional Lyapunov direct methods, system
trajectories are driven to the proposed sliding surface and remain on it evermore, and some novel cri-
teria are obtained to realize global projective synchronization of nonidentical FNNs. As the special cases,
some sufficient conditions are given to ensure projective synchronization of identical FNNs, complete syn-
chronization of nonidentical FNNs and anti-synchronization of nonidentical FNNs. Finally, one numerical
example is given to demonstrate the effectiveness of the obtained results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional calculus, which is a generalization of integer-order
integration and differentiation to its non-integer counter part, has
been intensively investigated in many fields, covering dynamics
of complex materials or porous media (Carpinteri, Cornetti, &
Kolwankar, 2004), fluid mechanics (Tripathi, Pandey, & Das,
2010), bioengineering (Magin, 2004, 2010; Magin & Ovadia, 2008),
viscoelasticity (Soczkiewicz, 2002), etc. As fractional calculus has
infinite memory, and has proven to be an excellent tool for
the description of memory and hereditary properties of various
materials and processes (Chen, Ye, & Sun, 2010; Isfer, Lenzi,
Teixeira, & Lenzi, 2010; Kilbas &Marzan, 2005; Szabo &Wu, 2000),
it is easy to see that the incorporation of a memory term into a
neural network model is an extremely important improvement.
In recent years, fractional-order neural networks (FNNs) have
attracted attentions of many researchers, and various dynamical
behaviors of FNNs have been widely investigated, such as Chen,
Chai, Wu, Ma, and Zhai (2013), Kaslik and Sivasundaram (2012),
Wang, Yu, Wen, and Zhang (2013), Yu, Hu, and Jiang (2012), Zhou,
Li, and Zhu (2008), Zou, Qu, Chen, Chai, and Yang (2014).

Since Pecora and Carroll (Pecora & Carroll, 1990) firstly put for-
ward chaos synchronization in 1990, more and more researchers
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pay enough attentions to studying synchronization. The increas-
ing interest in researching synchronization stems from its potential
applications in cryptography, secure communication, optimization
of nonlinear systems performance, modeling brain activity, and
chemical reaction (Boccaletti, Kurths, Osipov, Valladares, & Zhou,
2002; Chen & Dong, 1998; Ojalvo & Roy, 2001; Ott, Grebogi, &
Yorke, 1990; Sprott, 2003; Yang& Chua, 1997). So far, various types
of fractional-order synchronization results emerge in large num-
bers, such as complete synchronization (Ding, Shen, &Wang, 2016;
Yan & Li, 2007), generalized synchronization (Wu, Lai, & Lu, 2012),
phase synchronization (Erjaee & Momani, 2008), lag synchroniza-
tion (Zhu, He, & Zhou, 2011), etc. As pointed out in Wang and
He (2008), projective synchronization, amongst all kinds of syn-
chronization, can obtain faster communication for its proportional
feature in application to secure communications. Subsequently, a
series of results about projective synchronization appear, such
as Bao and Cao (2015), Hu, Xu, and Yang (2008), Si, Sun, Zhang,
and Chen (2012), Xin, Chen, and Liu (2011), Yu, Hu, Jiang, and Fan
(2014).

However, to the best of our knowledge, most reports are con-
cerned with the projective synchronization problem for identical
fractional-order systems. In practice, due to the mismatched pa-
rameters and functionswhich are unavoidable in real implementa-
tion, the drive system and response system are not identical. From
the point of view of engineering, it is very difficult to keep the two
systems to be identical all the time (Huang & Feng, 2009). There-
fore, it is significant to study projective synchronization problem
of nonidentical FNNs.
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To deal with synchronization of FNNs, there exist different
control approaches, such as linear feedback control (Chen, Zeng,
& Jiang, 2014; Zhang, Yu, & Wang, 2015), adaptive control (Bao &
Cao, 2015; Yu et al., 2014), and so on. Sliding mode control, as a
robust variable structure control method, is an important control
technique. Its advantages include fast response, low sensitivity to
external noises, robustness to the system uncertainties and easy
realization. The main idea of sliding mode control is forcing the
system state trajectories to some predefined sliding surfaces by
using adiscontinuous controller, and the systemon sliding surfaces
has desired properties such as stability. In addition, sliding mode
controller includes an equivalent control part that describes the
behaviors of the systemwhen the trajectories stay over the sliding
surface, and a variable structure control part that enforces the
trajectories to reach the sliding surface and remain on it evermore.

Motivated by the above discussions, in this paper, we focus our
attentions on the global projective synchronization of nonidentical
FNNs in the sense of Caputo fractional derivation. Firstly, by con-
sidering themeasured output of system, a fractional-order integral
sliding surface is properly constructed. To guarantee the existence
of the sliding motion, we design a sliding mode controller by using
sliding mode control theory. Then, based on fractional Lyapunov
direct methods and the properties of Caputo fractional-order
derivative, reachability of the specified sliding surface is analyzed,
and some sufficient criteria for the global projective synchroniza-
tion of nonidentical FNNs are presented. Besides, the global pro-
jective synchronization of identical FNNs are proved. Finally, by
selecting different projection coefficient, the obtained results can
be used to achieve globally asymptotically complete synchroniza-
tion and globally asymptotically anti-synchronization of noniden-
tical FNNs.

The organization of this paper is as follows. The system and
some preliminaries are introduced in Section 2. In Section 3,
sufficient criteria are established based on a fractional-order
integral sliding mode controller, sliding mode control theory and
fractional Lyapunov direct methods. Then, numerical simulations
are given to demonstrate the effectiveness of the obtained results
in Section 4. Finally, conclusions are drawn in Section 5.

2. Preliminaries

Notations. Through this paper, R is the space of real number,
N+ is the set of positive integers, C is the space of complex
number, Rn denotes the n-dimensional Euclidean space, and Rm×n

denotes the set of all m × n real matrices. sgn(·) is symbolic
function. [·, ·] represents the interval and diag{· · · } denotes
a block-diagonal matrix. If not stated explicitly, matrices are
assumed to have compatible dimensions for algebraic operations.
In addition, C r


[t0,+∞),R


denotes the space consisting of

r-order continuous differentiable functions from [t0,+∞) into R.
In order to investigate FNNs, we firstly recall some definitions

about fractional calculation and introduce some useful lemmas in
this section.

2.1. Caputo fractional-order derivative

Definition 1 (Kilbas, Srivastava, & Trujillo, 2006; Podlubny, 1999).
The fractional-order integral of order α for an integrable function
f (t) : [t0,+∞) → R is defined as

t0 I
α
t f (t) =

1
Γ (α)

 t

t0
(t − τ)α−1f (τ )dτ ,

where α > 0, and Γ (·) is the Gamma function which is defined by

Γ (z) =


∞

0
e−t tz−1dt,


Re(z) > 0


,

where Re(z) is the real part of z.

Definition 2 (Kilbas et al., 2006; Podlubny, 1999). The Caputo
fractional-order derivative of order α for a function f (t) ∈

Cn+1

[t0,+∞),R


is defined as

t0D
α
t f (t) =

1
Γ (n − α)

 t

t0

f (n)(τ )
(t − τ)α−n+1

dτ ,

where t ≥ t0 and n is a positive integer such that n − 1 < α < n.
Particularly, when 0 < α < 1,

t0D
α
t f (t) =

1
Γ (1 − α)

 t

t0

f ′(τ )

(t − τ)α
dτ .

Several important properties about Caputo fractional-order
derivative are listed below (Aghababa, 2013a; Li & Deng, 2007;
Podlubny, 1999).

Property 1. t0D
α
t c = 0 holds, where c is any constant.

Property 2. For any constants ν1 and ν2, the linearity of Caputo
fractional-order derivative is described by

t0D
α
t


ν1f (t)+ ν2g(t)


= ν1 t0D

α
t f (t)+ ν2 t0D

α
t g(t).

Property 3. t0D
α
t t0 I

β
t f (t) = t0D

α−β
t f (t) where α ≥ β ≥ 0.

Especially, when α = β , t0D
α
t t0 I

α
t f (t) = f (t).

Property 4. The Leibniz’ s rule for fractional differentiation is given
as:

t0D
α
t (φ(t)f (t)) =

∞
k=0

Γ (1 + α)

Γ (1 + k)Γ (α − k + 1)
φ(k)(t) t0D

α−k
t f (t),

if φ(t) and f (t) and all their derivatives are continuous in the interval
[t0, t], where φ(k)(t) is the integer-order derivative of order k for
function φ(t) and t0D

α−k
t f (t) is Caputo fractional-order derivative of

order α − k for function f (t).

Property 5. If x(t) ∈ C1
[0, T ] for some T > 0, then

0D
α1
t 0D

α2
t x(t) = 0D

α2
t 0D

α1
t x(t) = 0D

α1+α2
t x(t), t ∈ [0, T ],

where α1 > 0, α2 > 0 and α1 + α2 ≤ 1.

In addition, some necessary lemmas about Caputo fractional-
order derivative are given.

Lemma 1 (Kilbas et al., 2006). Let Ω = [a, b] be an interval on the
real axis R, let n = [α] + 1 for α ∉ N+ or n = α for α ∈ N+. If
x(t) ∈ Cn

[a, b], then

aIαt aDαt x(t) = x(t)−

n−1
k=0

x(k)(a)
k!

(t − a)k, n − 1 < α ≤ n,

where aIαt is fractional-order integral of order α and aDαt is Caputo
fractional-order derivative of order α. In particular, if 0 < α ≤ 1
and x(t) ∈ C1

[a, b], then

aIαt aDαt x(t) = x(t)− x(a).

Lemma 2 (Zhang et al., 2015). If h(t) ∈ C1([0,+∞],R) denotes
a continuously differentiable function, the following inequality holds
almost everywhere.

0Dαt |h(t)| ≤ sgn(h(t))0Dαt h(t), 0 < α < 1.
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