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a b s t r a c t

We consider the method of Reduction of Dissipativity Domain to prove global Lyapunov stability of
Discrete Time Recurrent Neural Networks. The standard and advanced criteria for Absolute Stability of
these essentially nonlinear systems produce rather weak results. The methodmentioned above is proved
to bemore powerful. It involves amulti-step procedurewithmaximization of special nonconvex functions
over polytopes on every step. We derive conditions which guarantee an existence of at most one point of
local maximum for such functions over every hyperplane. This nontrivial result is valid for wide range of
neuron transfer functions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction and problem setting

In this paper, we study existence of points of local maxima for
function f (x) =

n
i=1 ciφ(xi), where φ(·) is a nonlinear func-

tion, over a hyperplane. This problem arises in stability analysis
of nonlinear dynamical systems (Barabanov & Prokhorov, 2003),
for example Discrete Time Recurrent Neural Networks (DTRNN’s).
DTRNN’s have various applications such as image processing
(Chen, Hung, Chen, Liao, & Chen, 2006), time series analysis
(Gicquel, Anderson, & Kevekidis, 1998), etc. They are essentially
nonlinear systems of specific structure. Implementation of such
systemswithout rigorous stability analysis is hazardous. Therefore,
it is necessary to analyze stability of these systems before using
them for practical applications. A typical DTRNN can be described
by the following systems of equations;

xk+1
1 = φ(W1xk1 + Vnxkn + b1),

xk+1
2 = φ(W2xk2 + V1xk+1

1 + b2),
· · ·

xk+1
n = φ(Wnxkn + Vn−1xk+1

n−1 + bn), (1)

where n is the number of layers, φ(·) is the activation function, xkj
is the state vector of the layer j at time step k, Wj and Vj are fixed
weight matrices, and bj is a fixed vector representing bias.
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System (1) describes the dynamics of a standard multilayered
DTRNNwithout delays. Such RNN’s may be used to solve a number
of control problems (Prokhorov, Puskorius, & Feldkamp, 2001).
An implementation of Back Propagation Through Time (BPTT)
algorithm on the learning step results in determining coefficients
of matrices Wi, Vi, and vectors bi, for which system (1) matches
input–output pairs and behaves like globally asymptotically
stable system. For implementation of this DTRNN, however, it is
necessary to prove global asymptotic stability (GAS) of the unique
equilibrium state.

The strongest stability criteria for system (1) (except for
Barabanov & Prokhorov, 2003), to the best of our knowledge,
are provided by the theory of absolute stability (Barabanov &
Prokhorov, 2002). Corresponding approach assumes construction
of integral quadratic constraints (IQC), which use properties of
activation function φ, and application of LMI/KYP lemma to find a
quadratic Lyapunov function.We describe this approach and some
other approaches in more detail later in this paper.

Unfortunately, criteria for absolute stability are not sufficiently
strong to cover practically important RNN’s. This is true even for
one layered low dimensional systems. All available (millions) of
numerical solutions of RNNs obtained after learning process tend
to the same equilibrium state, but none of absolute stability criteria
is applicable. It occurs due to the following reason. Classical criteria
for GAS take into account only certain properties of nonlinear
functions (monotonicity, sector condition). But among systems (1)
with the same parameters but different function φ satisfying same
properties, there might be an unstable system. In this case, criteria
for absolute stability are not applicable.

An alternative approach was needed, and it has appeared in
Barabanov and Prokhorov (2003). The method of reduction of
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dissipativity domain (MRDD) is applicable to all systems (1), which
have convex Lyapunov functions. One of deficiencies of methods
based on a search of quadratic Lyapunov functions is the fact
that the level sets of these functions are positive homogeneous
(i.e. ellipses with the same parameters). But nonlinear function
close to zero and far from zero belong to essentially different
sectors, which requires ellipses with different parameters. All
standard methods fail in such cases, but if system (1) has a convex
(nonquadratic) Lyapunov function, then the MRDD works. This is
very commondue to large number of nonlinear functions in system
(1).

Certainly, there exists a cost for such a generalization. It
concerns a necessity to solve number of optimization problems of
the same kind. This paper is devoted to this subject.

There are a number of interesting papers about GAS of DTRNN
with several delays and/or several activation functions and/or
nonzero linear parts (see for example Gao & Chen, 2007; Liu,
Wang, Serrano, & Liu, 2007; Song, Gao, & Zheng, 2009). All stability
criteria in these papers are based of a construction of certain
local or integral quadratic constraints and application of quadratic
Lyapunov functions. TheMRDDmay be also used for such systems.
This may be a subject of future investigations.

Next, we consider two favorite approached for global asymp-
totic stability of systems (1).

In Sukyens, Vandwalle, and DeMoor (1996), a stability criterion
has been developed using NLq approach. A typical NLq system
(without external inputs), is of the form,

pk+1 = P1Q1P2Q2 . . . PqQqpk (2)

where pk ∈ Rn, Pi = (diag(pj))nj=1, andQi is a constantmatrix. Here
pj depends on pk continuously. The problem under consideration is
to check the stability of system (2), with matrices Pi satisfying the
relation ∥Pi∥ ≤ 1. The stability criterion using NLq approach says
that if there exists diagonal positive definite matrices Dj such that
∥DjQjD−1

j+1∥ < 1 for all j = 1, . . . , q (mod q), then the system (2) is
globally asymptotically stable. Using a suitablemethod (Barabanov
& Prokhorov, 2002), the RNN defined in (1) can be transformed to
form (2). Therefore the above criterion can be used to check the
stability of systems of form (1). The NLq approach gives sufficient
conditions for stability of nonlinear systems. However, there exist
nonlinear stable systems, forwhich theNLq stability criterion is not
satisfied. These nonlinear systems, for example, RNN, have shown
promise in various applications (Feldkamp & Puskorius, 1998).

Another stability criterion was developed using theory of
absolute stability (Aizerman & Gantmakher, 1963; Barabanov,
1987; Barabanov & Prokhorov, 2002; Narendra & Taylor, 1973;
Yakubovich, 1967). A system to be analyzed for stability using this
approach should be written in the automatic control form:

xk+1
= Axk + Bψk,

σ k
= Cxk,

ψi = φi(σi), i = 1 . . .m,

(3)

where, A, B, C are matrices of suitable size, ψk
= (ψ1, . . . , ψm) is

the input vector at step k, σ k
= (σ1, . . . , σm) is the output vector

at step k, and {φi(·)}
m
i=1 are nonlinear functions.

Before analyzing the stability of system (1) using theory
of Absolute stability, it needs to be transformed to (3). State
Space Extension method has been introduced in Barabanov and
Prokhorov (2002) to transform RNN to (3).

One of the significant contribution of theory of absolute sta-
bility is the frequency domain criterion (Szegö & Kalman, 1963;
Yakubovich, 1964, 1971, 1973). Frequency domain criterion gives
necessary and sufficient conditions for the existence of a quadratic
Lyapunov function for class of systems (3) with functions φ(·) sat-
isfying given local quadratic constraint. One of the most common

constraints used for stability analysis of nonlinear systems is sec-
tor constraint, and the corresponding stability criterion is known
as circle criterion. It has been shown in Barabanov and Prokhorov
(2002) that stability criterion given byNLq approach isweaker than
the circle criterion.

The circle criterion gives sufficient condition for stability of
nonlinear systems, with nonlinear function φ(·) satisfying sector
constraint. It only utilizes the fact that the nonlinear function φ(·)
satisfies a given sector condition. It might happen that given a
sector, defined by function φ(·), there exists a nonlinear function
satisfying sector condition, such that the corresponding system is
unstable. Additional information about the nonlinear function can
be used to check stability of nonlinear systems of particular kind,
for example RNN. A modified stability criterion using additional
information about the nonlinear function, (e.g. monotonicity) has
been developed in Barabanov and Prokhorov (2002). But this
criterion has been shown to be essentially sufficient for systems
with large number of nonlinear functions. In addition, this criterion
is not applicable to some practically stable systems, for instance
RNN’s.

The stability criterion given by theory of absolute stability
(Lankaster, Ran, &Rodman, 1986;Molinari, 1975) checks necessary
and sufficient conditions for existence of Lyapunov functions of
a particular kind (e.g. quadratic forms). But there exist stable
systems, for which quadratic Lyapunov functions do not exist. An
alternative stability criterion has been proposed in Barabanov and
Prokhorov (2003).

Consider the system

xk+1 = ψ(xk). (4)

Let D0 denote the whole space of vector xk. Suppose there exist
sets {Dk} such that Dk+1 ⊂ Dk, ψ(Dk) ⊆ Dk+1. If {Dk} → 0 (in
Hausdorff metric), as k → ∞, then obviously system (4) is globally
asymptotically stable. This approach is known as reduction of
dissipativity domain.

In order to implement this approach, the sets Dk need to be
defined. A possible choice of Dk is given by

Dk+1 = {x ∈ Dk : fk+1,j(x) ≤ αk+1,j, j = 1 . . .mk+1}

where mk is the number of constraints at step k, fk,j is a function,
and αk+1,j = maxx∈Dk fk,j(ψ(x)).

The set Dk is characterized by the set of pairs (fk,j, αk,j) where
j ∈ {1 . . .m}. A possible choice of fk,j(·) is linear functions. Then
Dk takes the shape of a polytope. It has been shown in Barabanov
and Prokhorov (2003) that if system (4) has a convex Lyapunov
function, then there exist linear functions fk,j such that {Dk} → 0.

The set Dk is constructed by computing the value αk,j for every
j. Since the functionψ(·) is nonconcave over the set Dk, it can have
multiple points of local maxima. At every step k, the points of local
maxima for the function f (ψ(·)) need to be computed.

Consider a single layer RNN with zero bias. Using substitution
y = Wx, it can be expressed as

yk+1 = Wφ(yk). (5)

For the case of RNN in (5), the function f (φ(·)) is given by the
inner product f (x) :=


lj,Wφ(x)


. We need to find points of local

maxima for f (·) over polytopes defined by matrix of constraints,
L = col(l1, l2, . . . , lm). It has been seen that, in all the cases, the
function f (·) has points of local maxima on the boundary of the
polytope. Wewill first locate the points of local maxima for f (·) on
an arbitrary hyperplane. The subject of this paper is the solution to
the following problem.

Problem Setting. Consider the hyperplane, P = {x : lT x = b}
where l is a unit normal vector and b ∈ R. How many points of
local maxima does the function f (x) =

n
i=1 ciφ(xi), ci ≠ 0 for all

i, have on P? Here, φ(·) is a standard neuron transfer function.
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